Exploring the Effects of Early Nutritional Interventions on Growth, Metabolic Profiles, and Neurodevelopment in Preterm Rat Models
DOI:
https://doi.org/10.21649/akemu.v31i4.5885Keywords:
Growth retardation, Homeostasis, Insulin, learning, Malnutrition, Newborn, Preterm, Leptin, TriglyceridesAbstract
Background: During the critical window of development, malnutrition can have long-term metabolic and neurodevelopmental consequences.
Objective: To evaluate the effect of early postnatal malnutrition and catch-up growth on metabolic profile and neurodevelopment in a preterm rat model, while adjusting for current body weight.
Methods: This experimental study was conducted on 142 neonatal rats. Rats were randomly allocated to normal (N) and malnourished (R) groups, from days 2-11 of postnatal life. Using litter size modification, malnourished rats were divided into three subgroups based on catch-up growth patterns (accelerated (RC), normal (RN) or no (RR) catchup), from days 11-21. Rats were provided food ad libitum from day 21 to 60. Growth velocity, serum glucose, insulin, leptin, triglycerides, and neurodevelopmental outcomes were compared among groups at day 60 while adjusting for body weight.
Results: During the catch-up growth phase, rats with accelerated growth (RC) exhibited significantly higher growth velocity (p<0.001) than normally fed rats (N), but this difference diminished by the study's end. Serum glucose concentrations were significantly higher in rats with rapid catch-up growth compared to those with normal (p=0.003) or no (p<0.001) catch-up growth. Serum insulin (p=0.15) and leptin (p=0.97) levels did not significantly differ among subgroups. Malnourished rats with normal catch-up growth demonstrated better-learned behaviour than rats with rapid (p=0.013) or no (p=0.009) catch-up growth.
Conclusion: Catch-up growth at a normal velocity after early postnatal malnutrition preserves metabolic health while limiting neurodevelopmental deficit. Accelerated catch-up growth, though transiently beneficial for growth, can increase vulnerability to neurodevelopmental deficits. These findings urge a nuanced approach in developmental biology and pediatric medicine for effective interventions and improved outcomes among preterm infants.
References
1. Walani SR. Global burden of preterm birth. Int J Gynaecol Obstet. 2020;150(1):31-33. doi:10.1002/ijgo.13195.
2. Pusdekar YV, Patel AB, Kurhe KG, Bhargav SR, Thorsten V, Garces A, et al. Rates and risk factors for preterm birth and low birthweight in the global network sites in six low- and low middle-income countries. Reprod Health. 2020;17(Suppl 3):187. doi:10.1186/s12978-020-01029-z.
3. Casirati A, Somaschini A, Perrone M, Vandoni G, Sebastiani F, Montagna E, et al. Preterm birth and metabolic implications on later life: A narrative review focused on body composition. Front Nutr. 2022;9:978271. doi:10.3389/fnut.2022.978271.
4. Martínez-Jiménez M, Gómez-García F, Gil-Campos M, Pérez-Navero J. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: a scoping review. Eur J Pediatr. 2020;179(8):1255-1265. doi:10.1007/s00431-020-03613-8.
5. Cetin I, Buhling K, Demir C, Kortam A, Prescott SL, Yamashiro Y, et al. Impact of Micronutrient Status during Pregnancy on Early Nutrition Programming. Ann Nutr Metab. 2019;74(4):269-278. doi:10.1159/000499698.
6. Zheng W, Li XN. Research progress on the role and clinical significance of DNA methylation in early nutritional programming. Sheng Li Xue Bao. 2023;75(3):403-412. doi:10.13294/j.aps.2023.0034.
7. Greer FR, Norlin S, Olsen IE. How Should the Preterm Infant Grow? Curr Pediatr Rep. 2013;1:240-246. doi:10.1007/s40124-013-0029-1.
8. Ruys CA, Hollanders JJ, Broring T, van Schie PEM, van der Pal SM, van de Lagemaat M, et al. Early-life growth of preterm infants and its impact on neurodevelopment. Pediatr Res. 2019;85(3):283-292. doi:10.1038/s41390-018-0139-0.
9. Han J, Jiang Y, Huang J, Zhang Y, Chen X, Li Y, et al. Postnatal growth of preterm infants during the first two years of life: catch-up growth accompanied by risk of overweight. Ital J Pediatr. 2021;47(1):66. doi:10.1186/s13052-021-01019-2.
10. van der Haak N, Wood K, Sweeney A, Munn Z. Risk of metabolic consequences of rapid weight gain and catch-up growth in the first two years of life: a systematic review protocol. JBI Database System Rev Implement Rep. 2019;17(1):10-15. doi:10.11124/JBISRIR-2017-003451.
11. Keller JA. Counting the Weighs: Growth Velocity Tables for Preterm Infants. Nutr Clin Pract. 2020;35(6):1119-1128. doi:10.1002/ncp.10550.
12. Song IG, Kim EK, Cho H, Shin SH, Sohn JA, Kim HS. Differential Effect of Growth on Development between AGA and SGA Preterm Infants. Int J Environ Res Public Health. 2020;17(9):3022. doi:10.3390/ijerph17093022.
13. Du Sert NP, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020;18(7):e3000411. doi:10.1371/journal.pbio.3000411.
14. Alexeev EE, Lonnerdal B, Griffin IJ. Effects of postnatal growth restriction and subsequent catch-up growth on neurodevelopment and glucose homeostasis in rats. BMC Physiol. 2015;15(1):3. doi:10.1186/s12899-015-0017-5.
15. Widdowson EM, RA M. Some effects of accelerating growth. I. General somatic development. Proc R Soc Lond B Biol Sci. 1960;152(947):188-206. doi:10.1098/rspb.1960.0032.
16. Fiorotto ML, Burrin DG, Perez M, Reeds PJ. Intake and use of milk nutrients by rat pups suckled in small, medium, or large litters. Am J Physiol Regul Integr Comp Physiol. 1991;260(6):R1104-R1113. doi:10.1152/ajpregu.1991.260.6.R1104.
17. Faul F, Erdfelder E, Lang A-G, Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-191. doi:10.3758/BF03193146.
18. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. New York: Routledge; 2013. doi:10.4324/9780203771587.
19. Fenton TR, Chan HT, Madhu A, Griffin IJ, Hoyos A, Ziegler EE, et al. Preterm Infant Growth Velocity Calculations: A Systematic Review. Pediatrics. 2017;139(3):e20162045. doi:10.1542/peds.2016-2045.
20. Mazaheri M, Radahmadi M, Sharifi MR. Effects of chronic social equality and inequality conditions on passive avoidance memory and PTSD-like behaviors in rats under chronic empathic stress. Int J Neurosci. 2025;135(8):919-930. doi:10.1080/00207454.2024.2341913.
21. Kumar M, Dandapat S, Sinha MP, Kumar A, Raipat BS. Different blood collection methods from rats: A review. Balneo Res J. 2017;8(2):46-50. doi:10.12680/balneo.2017.141.
22. Cooke R, Goulet O, Huysentruyt K, Joosten K, Khadilkar AV, Mao M, et al. Catch-Up Growth in Infants and Young Children With Faltering Growth: Expert Opinion to Guide General Clinicians. J Pediatr Gastroenterol Nutr. 2023;77(1):7-15. doi:10.1097/MPG.0000000000003784.
23. Jańczewska I, Wierzba J, Jańczewska A, Szczurek-Gierczak M, Domżalska-Popadiuk I. Prematurity and Low Birth Weight and Their Impact on Childhood Growth Patterns and the Risk of Long-Term Cardiovascular Sequelae. Children. 2023;10(10):1599. doi:10.3390/children10101599.
24. Young A, Beattie RM, Johnson MJ. Optimising growth in very preterm infants: reviewing the evidence. Arch Dis Child Fetal Neonatal Ed. 2023;108(1):2-9. doi:10.1136/archdischild-2021-322892.
25. Camier A, Davisse-Paturet C, Scherdel P, Lioret S, Heude B, Charles MA, et al. Early growth according to protein content of infant formula: Results from the EDEN and ELFE birth cohorts. Pediatr Obes. 2021;16(11):e12803. doi:10.1111/ijpo.12803.
26. Cavalet LC, dos Santos Ribeiro LC, Rosa GB, Sousa KK, de Melo ABS, Campos DBT, et al. Long-term effects of early overfeeding and food restriction during puberty on cardiac remodeling in adult rats. J Dev Orig Health Dis. 2020;11(5):492-498. doi:10.1017/S2040174420000513.
27. Amadou C, Ancel PY, Zeitlin J, Ribet C, Zins M, Charles MA. Long-term health in individuals born preterm or with low birth weight: A cohort study. Pediatr Res. 2024:1-9. doi:10.1038/s41390-024-03346-6.
28. Saenz de Pipaon M, Dorronsoro I, Alvarez-Cuervo L, Butte NF, Madero R, Barrios V, et al. The impact of intrauterine and extrauterine weight gain in premature infants on later body composition. Pediatr Res. 2017;82(4):658-664. doi:10.1038/pr.2017.123.
29. Bouret SG. Organizational actions of metabolic hormones. Front Neuroendocrinol. 2013;34(1):18-26. doi:10.1016/j.yfrne.2013.01.001.
30. Jou MY, Lonnerdal B, Griffin IJ. Effects of early postnatal growth restriction and subsequent catch-up growth on body composition, insulin sensitivity, and behavior in neonatal rats. Pediatr Res. 2013;73(5):596-601. doi:10.1038/pr.2013.27.
31. Beyerlein A, Ness AR, Streuling I, Hadders-Algra M, von Kries R. Early rapid growth: no association with later cognitive functions in children born not small for gestational age. Am J Clin Nutr. 2010;92(3):585-593. doi:10.3945/ajcn.2009.29116.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Annals of King Edward Medical University

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access journal and all the published articles / items are distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For comments publications@kemu.edu.pk