
Introduction

In the last 20 years, the incidence of renal stones has 
varied between 1 and 19 percent globally, with a 

1,2
rising rate of incidence.  Renal stones are treated 
with shock wave lithotripsy (SWL), percutaneous 
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Abstract   

Background: One of the main surgical methods for upper urinary stones is retrograde intrarenal surgery (RIRS). 

Urosepsis is a serious complication of RIRS that threatens patients and confronts clinicians. To construct a valid 

predictive model for post-RIRS urosepsis, a dataset including demographic and pre-operative factors from 260 patients 

who underwent RIRS was used.

Objective: The aim of this research was to create a machine learning (ML) model as a novel solution to predict high-

risk patient populations for urosepsis after retrograde intrarenal surgery (RIRS).

Methods: This retrospective analysis involved 260 patients who were treated with retrograde intrarenal surgery 

(RIRS) without pre-stenting at Pakistan Kidney and Liver Institute & Research Center from September 2018 to August 

2024. Demographic, clinical, and preoperative data were retrieved to construct a predictive model for post-RIRS 

urosepsis. Supervised machine learning algorithms, i.e., Support Vector Machine, Gaussian Naïve Bayes, Logistic 

Regression, Decision Tree, and k-nearest Neighbors, were utilized. Model performance was assessed by accuracy, 

precision, recall, and Area Under the Receiver Operating Characteristic Curve.

Results: The machine learning models were able to predict post-RIRS urosepsis based on preoperative demographic 

and clinical features. Of the algorithms used, Support Vector Machine (SVM), Logistic Regression, and k-Nearest 

Neighbors (KNN) classifiers performed best in terms of predictive accuracy, and SVM had the best overall accuracy. 

The findings prove that ML-based methods are capable of predicting high-risk patients before surgery effectively.

Conclusion: This algorithm encompasses the potential to detect and prevent the development of urosepsis in RIRS 

patients and creating proper care plans through machine learning models.
st ndReceived: 17-04-2025  |  1  Revision:  22-05-2025  |   2  Revision: 06-07-2025  |   Accepted: 10-07-2025

Corresponding Author | Saira Imtiaz, Department of Research, Pakistan Kidney and Liver Institute and Research 

Centre Lahore, Pakistan. Email: saira.khan@pkli.org.pk  

Keywords | Machine Learning, Post-RIRS, Urosepsis, Prediction

How to cite: Rehman AU, Nusrat NB, Muhammad S, Zafar N, Imtiaz S, Tahir A et al. Can Machine Learning 

Revolutionize Post-Retrograde Intrarenal Surgery Urosepsis Prediction? A Single-Center Study. Ann King Edw Med 

Univ.2025;31(spi2): 136-145.

1-5,7-11 6,12Department of Urology, Pakistan Kidney and Liver Institute and Research Centre Lahore, Pakistan; Department 

of Research, Pakistan Kidney and Liver Institute and Research Centre Lahore, Pakistan

Ann King Edw Med Univ

Original Article

Production and Hosting by KEMU
https://doi.org/10.21649/akemu.v31iSpl2.6082

 2025 The Author(s). Published by Annals of 2079-7192/©
KEMU on behalf of King Edward Medical University Lahore,
Pakistan.
This is an open access article under the CC BY4.0 license 
http://creativecommons.org/licenses/by/4.0/

April - June 2025 | Volume 31 | Special Issue | Page 136



nephrolithotomy (PCNL), or retrograde intrarenal 
1

surgery (RIRS).  The operations related to urolithiasis 
are rising due to the increasing prevalence of the 

2
disease and the rapid development of endourology.  
Five years after lithotripsy, nearly 50% of patients 

3
have a recurrence of kidney stones.  PCNL has up to 
95% stone-free status but is more suitable for larger 

4stones.  For patients with renal stones smaller than 2 
cm, RIRS with a flexible ureteroscope is advised as 

5,6the primary option.

Retrograde intrarenal surgery (RIRS) is a novel and 
successful treatment for kidney stones because it 
dramatically influences the development of 
endoscopy in urology and the advancement of 

7
minimally invasive surgery in urology.  According to 
EAU recommendations, 9–25% of RIRS procedures 

8
result in complications.  The treatment is typically 

9
considered safe.  Although there are still significant 
complications, the most critical ones are bleeding, 
cardiovascular events (such as stroke or pulmonary 
embolism), ureteral avulsion or perforation, stricture 
of the ureter, vascular or enteric fistula formation, 
acute urinary tract infection (UTI) and sepsis, and 

10death.  Mortality rates from sepsis range from 17.3% 
11in the general population to 35.5%.  Additionally, the 

high treatment costs associated with critical care 
place a significant financial strain on the healthcare 

12system.  

Nonetheless, as a surgical modality, RIRS is 
relatively safe; however, adverse events such as acute 
urinary tract infection and sepsis are sometimes life-
threatening and cause multi-organ dysfunction. 
Urosepsis, sepsis caused by infection of the 
urogenital tract, is the most serious complication of 

13
RIRS.  The risk of urosepsis development should be 
identified as early as possible to implement 
appropriate preventive measures, lower risk-related 

14costs, and have a better prognosis.  Preoperative 
screening of such patients enables clinicians to use 
individual care plans and avert serious postoperative 

14adverse events.  

Machine learning (ML) is now often used in 
healthcare to be able to anticipate and handle a variety 
of chronic and acute health problems. Due to its 
ability to analyze datasets, identify patterns and 
create exclusive forecast models, it can potentially 

15
support clinical decisions.  Patients undergoing 
retrograde intrarenal surgery (RIRS) can be classified 

into two categories: those who encounter urosepsis 
and those who do not. It is still hard for physicians to 
identify individuals who will experience complicat-
ions prior to their arrival. ML may be used to classify 
patients into risk categories based on measurements 

16
drawn from their files prior to surgery.  They may be 
used in models that attempt to predict the likelihood 
of postoperative complications such as urosepsis. To 
have prediction tools available in clinical use may 
guide pre-surgery preparation for patients as well as 
follow-up on them, enabling physicians to make rapid 

17interventions when needed.

In this article, a machine learning-based predictive 
model for the prediction of urosepsis among RIRS 
patients has been proposed. The major risk factors for 
urosepsis during the postoperative course after RIRS 
for urolithiasis are also discussed. SVC, Gaussian 
Naïve Bayes, Decision Tree Classifier, KNN 
Classifier, and Logistic Regression were applied. 
These models were selected because of their 
versatility in carrying out classifiers pertaining to 
linear or non-linear in the data sets. This machine 
learning algorithm seeks to identify and define an 
easy, efficient, and effective way for allowing 
clinicians to detect risky patients prior to surgery. The 
performance of the models is measured with 
reference to using accuracy and AUROC.

Methods

The overall approach to carry out this study is as 
follows: Numbers need to be removed and 
subheadings can be kept as requested by authors but 
in italics. 

i. Data Collection:

The above-mentioned retrospective study was 
performed at Pakistan Kidney and Liver Institute and 
Research Center (PKLI & RC) between September 
2018 and August 2024. The goal was to construct a 
predictive model for urosepsis in patients with 
retrograde intrarenal surgery (RIRS) without 
preoperative stenting. 260 patients were enrolled, and 
inclusion criteria like the preoperative ureteral stent 
free status, 9.5 Fr re-access ureteric sheath use, and 
availability of detailed medical records were fulfilled. 
The patients who received other stone managing 
procedures or emergency cases of RIRS were 
excluded based on exclusion criteria. Data were 
collected retrospectively using a structured form that 
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captured demographic, clinical, and postoperative 
outcome information.

The dataset included variables like age, BMI, stone 
size and location, and preoperative blood biomarkers, 
which were used in the predictive model to assess 
urosepsis.

ii. Problem-specific Pre-processing

We did the following pre-processing according to the 
problem:

- Only the pre-operative features were included 
to develop a predictive model

- Records with incomplete data for patients 
were filtered

iii. Numerical Encoding

Numerical encoding or Label encoding is a technique 
typically used in machine learning to convert 

18categorical data into numerical data.  The dataset had 
both categorical and numerical features. Therefore, 
'Label Encoder' translated all non-numeric features 
into numerical values. For example, for the post-
operative complication, the data was labeled as 1 for 
the presence of urosepsis and 0 for no complication, 
Out of 260 patients, approximately 30 (11.5%) 
developed urosepsis following RIRS, while 230 
(88.5%) experienced no postoperative complica-
tions.

Figure 1: Frequency of Post Operative Complications

i. Normalization:

Normalization is used to re-scale all the data points on 
19

a common scale.  We used min-max scaler to 
normalize features and limit values in the 0, 1 range.

ii. Data Sampling:

The dataset was split into 80% training set, 10% 
test set, and 10% validation set.

iii.  Feature Selection:

Feature selection is used to find the best or optimal set 
of features out of all the variables in the original 

20dataset.  This is essential for the optimization of 
machine learning models because only relevant data 
is fed into them. We employed Sequential Forward 
Selection (SFS) and Sequential Backward Selection 
(SBS), as depicted in Figure. 2, to determine the 
optimal selection of features for the machine learning 
algorithms. Sequential Forward Selection (SFS) is a 
feature selection algorithm that begins with an empty 
initial feature set and includes the most important 
feature in each iteration cumulatively. This process is 
carried out until the addition of additional features no 
longer enhances the model's performance or until a 
termination point is reached. This technique assists in 
choosing the best possible features while minimizing 

21computational complexity.

Sequential Backward Selection (SBS) is a feature 
selection technique that begins with all features and 
removes the least important feature in each iteration 
cumulatively. The procedure is repeated until further 
feature reduction degrades the performance of the 
model, or some convergence criterion is met. This 
technique proves useful in removing unnecessary or 
meaningless features, thus enhancing model 

21
efficiency and interpretability.  Features provided by 
SBS were considered for the next analysis and all 
other features were rejected.

The SBS gave age, gender, family history of kidney 
stones, BMI numerical value, BMI category, UTI, 
diuretics antacids, geographic location, pre-stent, 
previous stone removal procedure, and preop WBC.
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Figure 2: (a) The Sequential Forward Selection Method 
gives the optimal result on a set of 16 feature, (b) The 
Sequential Backward Selection Method gives the optimal 
result on a set of 11 features.

i. Machine Learning Models:

The following machine learning algorithms were 
used to develop the predictive model. Jupyter 
Notebook was used for coding in Python. The scikit 
learn build in models were used for analysis.

Support Vector Machine Classifier

SVM is a supervised learning algorithm that 
determines the best hyperplane to divide data points 
into different classes. It is suitable for both linear and 
non-linear classification with kernel functions and 

22
performs well in high-dimensional spaces.

Gaussian NB Classifier

It is a Bayes' theorem-based probabilistic classifier 
that assumes features are Gaussian (normally) 
distributed. It is fast, easy, and suitable for 
independent feature problems and hence suitable for 

22
text classification and medical diagnosis.

Decision Tree Classifier

A tree-based model that classifies data points by 

splitting data into branches depending on feature 
values to make a classification decision. It is easy to 
interpret, can handle numerical and categorical data, 

22
and is susceptible to overfitting if not pruned.

KNN Classifier

A non-parametric algorithm that classifies data points 
according to the majority class of their k-nearest 
neighbors. It is easy and effective for small datasets 

22
but computationally intensive for large datasets.

Logistic Regression

A statistical model applied for binary classification 
that predicts the probability of an instance belonging 
to a specific class based on a sigmoid function. 
Although simple, it is effective for linearly separable 

22
data and a baseline for most classification problems.

Results

This paper focused on creating machine learning 
prediction model that can forecast the risk of 
urosepsis after retrograde intrarenal surgery (RIRS). 
We used models such as Support Vector Classifier 
(SVC), Gaussian Naive Bayes, Decision Tree 
Classifier, K-Nearest Neighbours (KNN) Classifier, 
and Logistic Regression. The models were evaluated 
using performance metrics like precision, recall, F1-
score, accuracy, and Area Under the Receiver 
Operating Characteristic Curve (AUROC). Table 1 
gives the summary for each model's precision, recall, 
F1-score, accuracy, and AUROC.

The Support Vector Classifier model achieved a high 
recall value of 0.98, accurately diagnosing most 
urosepsis cases. The model demonstrated precise 
diagnostics by achieving 0.88 precision, which 
implies that it predicted positive cases with few 
erroneous outcomes. The F1-score value of 0.94 
effectively demonstrates how well the model 

(b)

Table 1:  Model Performance Overview of each machine learning model

Model Precision Recall F1-Score Accuracy AUROC*

SVC 0.88 0.98 0.94 0.88 0.6957

GaussianNB 0.56 0.52 0.49 0.5 0.7391

Decision Tree 0.87 0.87 0.87 0.77 0.4348

K-Nearest Neighbors 0.88 0.99 0.94 0.88 0.5942

Logistic Regression 0.88 1 0.94 0.88 0.6087

* AUROC (Area Under the Receiver Operating Characteristic Curve)
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balances its precision and recall numbers 
proportionally. The SVC model demonstrated 88% 
accuracy, marking a leading position among the 
reported study participants. The 0.6957 AUROC 
score, given in Figure. 3 (b) demonstrates the model's 
good performance yet reveals further potential for 
development to advance its ability to differentiate 
between classes. The confusion matrix in Figure. 3 (a) 
shows that the model performs well in identifying 
class 0, correctly classifying 23 instances with no 
false positives. However, it fails to identify class 1, 
misclassifying all three instances as class 0, resulting 
in zero true positives. This suggests a strong bias 
toward class 0, potentially due to class imbalance. 
While the model has high recall for class 0, its poor 
recall for class 1 makes it ineffective for tasks where 
detecting class 1 is crucial.

Figure 3: This figure shows the performance of 
Support Vector Machine Classifier through (a) 
Confusion Matrix (b) AUROC

The Gaussian Naive Bayes proved to achieve worse 

results than other models in analysis. The method 
demonstrated a poor ability to detect actual urosepsis 
cases through its low precision score of 0.56 and 
recall score of 0.52. The precision and recall 
relationship are evaluated as F1 score of 0.49, 
indicating an undesired performance imbalance. The 
model demonstrated a moderate ability to classify 
patients based on their susceptibility to urosepsis 
according to the AUROC score value of 0.7391, given 
in Figure. 3 (b) despite having lower precision and 
recall scores. The confusion matrix given in Figure. 3 
(a) indicates that the model struggles with correctly 
classifying class 0 (urosepsis) but performs slightly 
better for class 1 (normal). It correctly identifies only 
one instance of class 0 while misclassifying 22 cases 
of class 0 as class 1, leading to a high false positive 
rate. However, it correctly classifies three cases of 
class 1 and does not misclassify any of them as class 
0. This suggests that the model is biased toward 
predicting class 1, possibly due to the feature 
distribution assumptions of Gaussian Naïve Bayes

Figure 4: This figure shows the performance of 
Gaussian Naïve Bayes Classifier through (a) 
Confusion Matrix (b) AUROC.
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The decision tree model showed good performance 
through a precision value of 0.87 and recall value of 
0.87, which indicated equal efficiency in detecting 
true positives and minimizing incorrect predictions. 
The model achieved an accuracy level of 0.77, lower 
than both SVC and KNN. The AUROC score of 
0.4348 indicates the poor performance in 
distinguishing among classes. The confusion matrix 
for shows that the model performs well in identifying 
urosepsis cases (class 0), correctly classifying 20 
instances, with only three false negatives (urosepsis 
cases misclassified as non-urosepsis). However, it 
fails to identify non-urosepsis cases (class 1), 
misclassifying all three instances as urosepsis, 
resulting in zero true positives. This suggests the 
model is biased towards predicting urosepsis, likely 
due to data imbalance or overfitting.

Figure 5: This figure shows the performance of 
Decision Tree Classifier through (a) Confusion 
Matrix (b) AUROC

The KNN model showed high reliability (0.99) in 

correctly identifying true urosepsis cases; the model 

demonstrated a precision of 0.88, indicating that most 

of its positive predictions were accurate. This model 

achieved an 88% accuracy. The model demonstrated 

reduced capability in accurately ranking patient 

urosepsis risk levels according to an AUROC score of 

0.5942. The confusion matrix given in Figure. 6 (a) 

indicates that the model performs well in identifying 

urosepsis cases (class 0), correctly classifying 23 

instances with zero false positives. However, it fails 

to detect non-urosepsis cases (class 1), misclassifying 

all three instances as urosepsis, resulting in zero true 

positives. This suggests that the model is highly 

biased towards predicting urosepsis, possibly due to 

class imbalance or the choice of K value in KNN.

Figure 6: This figure shows the performance of KNN 
Classifier through (a) Confusion Matrix (b) AUROC
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The Logistic Regression model correctly recognized 
all actual urosepsis cases, achieving a perfect recall 
result of 1.00. The precision value of 0.88, aside from 
the F1-score value of 0.94, matched those of KNN 
and SVC models. The model successfully detected 
true urosepsis cases yet struggled with separating the 
classes across all patient data based on its AUROC 
score of 0.6087. The confusion matrix shows that the 
model is highly skewed towards predicting urosepsis 
(class 0). It correctly classifies 23 cases of urosepsis 
with zero false positives, indicating perfect 
specificity. However, it completely fails to identify 
non-urosepsis cases (class 1), misclassifying all 3 
instances as urosepsis, resulting in zero true positives. 
This suggests a strong bias toward predicting 
urosepsis, which may be due to class imbalance or 
model limitations in distinguishing features of non-
urosepsis cases.

Figure 7: This figure shows the performance of 
Logistic Regression through (a) Confusion Matrix (b) 
AUROC

The three models, Support Vector Classifier and K-
Nearest Neighbours and Logistic Regression 
demonstrated exceptional results based on precision 
rates and recall and F1-score performance and 
accuracy metrics. The KNN and SVC models 
demonstrated a superior ability to recall urosepsis 
cases while minimizing inaccurate positive results 
along with other tested models. The Gaussian Naive 
Bayes model delivered the poorest results because it 
was not adapted to this dataset, as shown by its poor 
precision score, recall rate, and F1 score. The 
Decision Tree model showed adequate performance 
levels in precision and recall measurements yet had 
insufficient AUROC results, indicating poor class 
discrimination. The developed ML models, 
particularly SVM and KNN, offer practical clinical 
value by enabling early identification of patients at 
high risk for post-RIRS urosepsis. This enables 
targeted preoperative interventions, closer 
monitoring, and enhanced patient outcomes.

Discussion

This section presents the previous studies that have 
been done to develop predictive models for urosepsis. 
Pietropaolo et al. - 2021 used the ML model to 
determine potential correlates of severe urosepsis in 
ICU patients. Patients were retrospectively collected 
from nine high-volume European centers: 57 patients 
with urosepsis (Group A) and 57 matched controls 
without urosepsis (Group B). The random forest 
model was used, and the accuracy obtained was 
81.3%, and sensitivity and specificity were 0.80 and 
0.82, respectively, with an area under the curve of 
0.89. Other outcomes were proximal stone location, 

23stent duration, stone size, and operative time.  

Bunn et al. - 2021 utilized machine learning 
techniques to predict postoperative sepsis following 
appendectomy. Pretreatment predictors of sepsis 
were evaluated using logistic regression, support 
vector machines, random forest decision trees, and 
extreme gradient boosting. There was a comparable 
performance between logistic regression, random 
forest, and gradient boosting with an AUC of 0.70; 
95% CI, 0.68–0.73, while support vector machine 
had a significantly lower AUC of 0.51; 95%CI, 
0.50–0.52. The results showed that machine learning 
approaches could reasonably perform postoperative 
sepsis risk assessment to minimize morbidity through 

24early detection and intervention.

(a)

23

3

0

0

 Logistic Regression Confusion Matrix

T
ru

e
 la

b
e
l

Predicted label

Logistic Regression AUROC Curve

20

15

10

5

0

0

1

0 1

1

1.00.80.60.40.2
False Positive Rate(b)

1.0

0.8

0.6

0.4

0.2

0.0

0.0

T
ru

e
 P

o
si

tiv
e
 R

a
te

0

 

 



Ann King Edw Med Univ

April - June 2025 | Volume 31 | Special Issue | Page 143

Su et al. - 2022 developed an ML model based on 
biomarkers of patients with urosepsis. Retrospective 
analysis enrolled 157 patients with urosepsis, for 
whom laboratory data of biomarkers, such as 
procalcitonin, D-dimer, and C-reactive protein, were 
obtained. Five of the six machine learning models 
developed got above 80% accuracy, with the ANN 

25yielding the highest prediction.  Hong et al. – 2023 
developed an early risk assessment model for 
urosepsis in upper urinary tract calculi patients. A 
retrospective analysis of 1,716 patients (10.8% cases, 
89.2% controls) identified eight key variables: sex, 
age, body temperature, diabetes history, urine 
leukocyte, nitrite, glucose, hydronephrosis, etc. The 
ANN model exhibited excellent performance based 
on the high accuracy score of the validation set, which 
generated an AUC of 0.945, while the training set 

26
gave an AUC score of 0.992.
Chen et al. - 2022 developed a model incorporating 
radiomics and deep learning to predict sepsis after 
PCNL in patients with proximal ureteral calculi. The 
radionics model has an internal validation AUC of 
0.881 and an external validation AUC of 0.783. 
Implementing the DNN model increased prediction 
accuracy by 7 %, with internal validation of AUC 

270.920 and external 0.874.  Chen et al. - 2022 
developed a machine-learning model to identify 
infection stones preoperatively in 462 urolithiasis 
patients. The random forest classifier (RFC) 
outperformed logistic regression, achieving an AUC 

28
of 0.951 with high sensitivity and specificity.
Therefore, it is essential to derive a model suitable for 
our specific local population using region-specific 
data. Ideally, such a model would be tailored to 
identify unique demographic, clinical, and 
environment-based factors contributing to sepsis in 
the patients undergoing RIRS.

Conclusion
The clinical adoption of this prediction model can 
start by utilizing SVC, KNN, and Logistic Regression 
because they demonstrate the best performance in 
risk assessment for urosepsis following RIRS. Such a 
predictive model can enable doctors to recognize 
high-risk preoperative patients by analysing their 
clinical and demographic features, allowing for 
timely interventions such as administering 
prophylactic antibiotics, opting for delayed surgery, 
or increasing postoperative monitoring to improve 
patient outcomes. The detection of urosepsis before 

its development enables patient-specific care 
strategies that decrease serious complications and 
health expenses related to postoperative infections. 
The validation of these models on clinical patient 
populations representing various demographic 
backgrounds must occur in real-world settings to 
evaluate their capability of maintaining effectiveness. 
Implementing predictive models into clinical 
decision support systems should be thoroughly 
explored since they boost providers' data-based 
choices during postoperative care.
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