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Abstract

Background: One of the main surgical methods for upper urinary stones is retrograde intrarenal surgery (RIRS).
Urosepsis is a serious complication of RIRS that threatens patients and confronts clinicians. To construct a valid
predictive model for post-RIRS urosepsis, a dataset including demographic and pre-operative factors from 260 patients
who underwent RIRS was used.

Objective: The aim of this research was to create a machine learning (ML) model as a novel solution to predict high-
risk patient populations for urosepsis after retrograde intrarenal surgery (RIRS).

Methods: This retrospective analysis involved 260 patients who were treated with retrograde intrarenal surgery
(RIRS) without pre-stenting at Pakistan Kidney and Liver Institute & Research Center from September 2018 to August
2024. Demographic, clinical, and preoperative data were retrieved to construct a predictive model for post-RIRS
urosepsis. Supervised machine learning algorithms, i.e., Support Vector Machine, Gaussian Naive Bayes, Logistic
Regression, Decision Tree, and k-nearest Neighbors, were utilized. Model performance was assessed by accuracy,
precision, recall, and Area Under the Receiver Operating Characteristic Curve.

Results: The machine learning models were able to predict post-RIRS urosepsis based on preoperative demographic
and clinical features. Of the algorithms used, Support Vector Machine (SVM), Logistic Regression, and k-Nearest
Neighbors (KNN) classifiers performed best in terms of predictive accuracy, and SVM had the best overall accuracy.
The findings prove that ML-based methods are capable of predicting high-risk patients before surgery effectively.
Conclusion: This algorithm encompasses the potential to detect and prevent the development of urosepsis in RIRS
patients and creating proper care plans through machine learning models.
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nephrolithotomy (PCNL), or retrograde intrarenal
surgery (RIRS).' The operations related to urolithiasis
are rising due to the increasing prevalence of the
disease and the rapid development of endourology.’
Five years after lithotripsy, nearly 50% of patients
have a recurrence of kidney stones.’ PCNL has up to
95% stone-free status but is more suitable for larger
stones. For patients with renal stones smaller than 2
cm, RIRS with a flexible ureteroscope is advised as
the primary option.™

Retrograde intrarenal surgery (RIRS) is a novel and
successful treatment for kidney stones because it
dramatically influences the development of
endoscopy in urology and the advancement of
minimally invasive surgery in urology.” According to
EAU recommendations, 9-25% of RIRS procedures
result in complications.” The treatment is typically
considered safe.” Although there are still significant
complications, the most critical ones are bleeding,
cardiovascular events (such as stroke or pulmonary
embolism), ureteral avulsion or perforation, stricture
of the ureter, vascular or enteric fistula formation,
acute urinary tract infection (UTI) and sepsis, and
death."’ Mortality rates from sepsis range from 17.3%
in the general population to 35.5%."' Additionally, the
high treatment costs associated with critical care
place a significant financial strain on the healthcare
system."

Nonetheless, as a surgical modality, RIRS is
relatively safe; however, adverse events such as acute
urinary tract infection and sepsis are sometimes life-
threatening and cause multi-organ dysfunction.
Urosepsis, sepsis caused by infection of the
urogenital tract, is the most serious complication of
RIRS." The risk of urosepsis development should be
identified as early as possible to implement
appropriate preventive measures, lower risk-related
costs, and have a better prognosis.’ Preoperative
screening of such patients enables clinicians to use
individual care plans and avert serious postoperative
adverse events."

Machine learning (ML) is now often used in
healthcare to be able to anticipate and handle a variety
of chronic and acute health problems. Due to its
ability to analyze datasets, identify patterns and
create exclusive forecast models, it can potentially
support clinical decisions.” Patients undergoing
retrograde intrarenal surgery (RIRS) can be classified

into two categories: those who encounter urosepsis
and those who do not. It is still hard for physicians to
identify individuals who will experience complicat-
ions prior to their arrival. ML may be used to classify
patients into risk categories based on measurements
drawn from their files prior to surgery."* They may be
used in models that attempt to predict the likelihood
of postoperative complications such as urosepsis. To
have prediction tools available in clinical use may
guide pre-surgery preparation for patients as well as
follow-up on them, enabling physicians to make rapid
interventions when needed."”’

In this article, a machine learning-based predictive
model for the prediction of urosepsis among RIRS
patients has been proposed. The major risk factors for
urosepsis during the postoperative course after RIRS
for urolithiasis are also discussed. SVC, Gaussian
Naive Bayes, Decision Tree Classifier, KNN
Classifier, and Logistic Regression were applied.
These models were selected because of their
versatility in carrying out classifiers pertaining to
linear or non-linear in the data sets. This machine
learning algorithm seeks to identify and define an
easy, efficient, and effective way for allowing
clinicians to detect risky patients prior to surgery. The
performance of the models is measured with
reference to using accuracy and AUROC.

Methods

The overall approach to carry out this study is as
follows: Numbers need to be removed and
subheadings can be kept as requested by authors but
initalics.

i Data Collection:

The above-mentioned retrospective study was
performed at Pakistan Kidney and Liver Institute and
Research Center (PKLI & RC) between September
2018 and August 2024. The goal was to construct a
predictive model for urosepsis in patients with
retrograde intrarenal surgery (RIRS) without
preoperative stenting. 260 patients were enrolled, and
inclusion criteria like the preoperative ureteral stent
free status, 9.5 Fr re-access ureteric sheath use, and
availability of detailed medical records were fulfilled.
The patients who received other stone managing
procedures or emergency cases of RIRS were
excluded based on exclusion criteria. Data were
collected retrospectively using a structured form that
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captured demographic, clinical, and postoperative
outcome information.

The dataset included variables like age, BMI, stone
size and location, and preoperative blood biomarkers,
which were used in the predictive model to assess
urosepsis.

ii. Problem-specific Pre-processing

We did the following pre-processing according to the
problem:

- Only the pre-operative features were included
to develop a predictive model

- Records with incomplete data for patients
were filtered

iii. Numerical Encoding

Numerical encoding or Label encoding is a technique
typically used in machine learning to convert
categorical data into numerical data.” The dataset had
both categorical and numerical features. Therefore,
'Label Encoder' translated all non-numeric features
into numerical values. For example, for the post-
operative complication, the data was labeled as 1 for
the presence of urosepsis and 0 for no complication,
Out of 260 patients, approximately 30 (11.5%)
developed urosepsis following RIRS, while 230
(88.5%) experienced no postoperative complica-
tions.

2001

150 4

Frequency

-
o
o
L

50+

0.0 02 0.4 0.6 0.8 1.0
Post Operative Complications

Figure 1: Frequency of Post Operative Complications
1. Normalization:

Normalization is used to re-scale all the data points on
a common scale.” We used min-max scaler to
normalize features and limit values in the 0, 1 range.

ii. Data Sampling:

The dataset was split into 80% training set, 10%
test set, and 10% validation set.

iil. Feature Selection:

Feature selection is used to find the best or optimal set
of features out of all the variables in the original
dataset.”” This is essential for the optimization of
machine learning models because only relevant data
is fed into them. We employed Sequential Forward
Selection (SFS) and Sequential Backward Selection
(SBS), as depicted in Figure. 2, to determine the
optimal selection of features for the machine learning
algorithms. Sequential Forward Selection (SFS) is a
feature selection algorithm that begins with an empty
initial feature set and includes the most important
feature in each iteration cumulatively. This process is
carried out until the addition of additional features no
longer enhances the model's performance or until a
termination point is reached. This technique assists in
choosing the best possible features while minimizing
computational complexity.”

Sequential Backward Selection (SBS) is a feature
selection technique that begins with all features and
removes the least important feature in each iteration
cumulatively. The procedure is repeated until further
feature reduction degrades the performance of the
model, or some convergence criterion is met. This
technique proves useful in removing unnecessary or
meaningless features, thus enhancing model
efficiency and interpretability.” Features provided by
SBS were considered for the next analysis and all
other features were rejected.

The SBS gave age, gender, family history of kidney
stones, BMI numerical value, BMI category, UTI,
diuretics antacids, geographic location, pre-stent,
previous stone removal procedure, and preop WBC.
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Figure 2: (a) The Sequential Forward Selection Method
gives the optimal result on a set of 16 feature, (b) The
Sequential Backward Selection Method gives the optimal
result on aset of 11 features.

i. Machine Learning Models:

The following machine learning algorithms were
used to develop the predictive model. Jupyter
Notebook was used for coding in Python. The scikit
learn build in models were used for analysis.

Support Vector Machine Classifier

SVM is a supervised learning algorithm that
determines the best hyperplane to divide data points
into different classes. It is suitable for both linear and
non-linear classification with kernel functions and
performs well in high-dimensional spaces.”

Gaussian NB Classifier

It is a Bayes' theorem-based probabilistic classifier
that assumes features are Gaussian (normally)
distributed. It is fast, easy, and suitable for
independent feature problems and hence suitable for
text classification and medical diagnosis.”

Decision Tree Classifier

A tree-based model that classifies data points by

splitting data into branches depending on feature
values to make a classification decision. It is easy to
interpret, can handle numerical and categorical data,
and is susceptible to overfitting if not pruned.”

KNN Classifier

Anon-parametric algorithm that classifies data points
according to the majority class of their k-nearest
neighbors. It is easy and effective for small datasets
but computationally intensive for large datasets.”

Logistic Regression

A statistical model applied for binary classification
that predicts the probability of an instance belonging
to a specific class based on a sigmoid function.
Although simple, it is effective for linearly separable
data and a baseline for most classification problems.”

Results

This paper focused on creating machine learning
prediction model that can forecast the risk of
urosepsis after retrograde intrarenal surgery (RIRS).
We used models such as Support Vector Classifier
(SVC), Gaussian Naive Bayes, Decision Tree
Classifier, K-Nearest Neighbours (KNN) Classifier,
and Logistic Regression. The models were evaluated
using performance metrics like precision, recall, F1-
score, accuracy, and Area Under the Receiver
Operating Characteristic Curve (AUROC). Table 1
gives the summary for each model's precision, recall,
F1-score, accuracy,and AUROC.

The Support Vector Classifier model achieved a high
recall value of 0.98, accurately diagnosing most
urosepsis cases. The model demonstrated precise
diagnostics by achieving 0.88 precision, which
implies that it predicted positive cases with few
erroneous outcomes. The Fl-score value of 0.94
effectively demonstrates how well the model

Table 1: Model Performance Overview of each machine learning model

Model Precision Recall F1-Score Accuracy AUROC*
SvC 0.88 0.98 0.94 0.88 0.6957
GaussianNB 0.56 0.52 0.49 0.5 0.7391
Decision Tree 0.87 0.87 0.87 0.77 0.4348
K-Nearest Neighbors 0.88 0.99 0.94 0.88 0.5942
Logistic Regression 0.88 1 0.94 0.88 0.6087

* AUROC (Area Under the Receiver Operating Characteristic Curve)
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balances its precision and recall numbers
proportionally. The SVC model demonstrated 88%
accuracy, marking a leading position among the
reported study participants. The 0.6957 AUROC
score, given in Figure. 3 (b) demonstrates the model's
good performance yet reveals further potential for
development to advance its ability to differentiate
between classes. The confusion matrix in Figure. 3 (a)
shows that the model performs well in identifying
class 0, correctly classifying 23 instances with no
false positives. However, it fails to identify class 1,
misclassifying all three instances as class 0, resulting
in zero true positives. This suggests a strong bias
toward class 0, potentially due to class imbalance.
While the model has high recall for class 0, its poor
recall for class 1 makes it ineffective for tasks where
detecting class 1 is crucial.
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Figure 3: This figure shows the performance of
Support Vector Machine Classifier through (a)
Confusion Matrix (b) AUROC

The Gaussian Naive Bayes proved to achieve worse

results than other models in analysis. The method
demonstrated a poor ability to detect actual urosepsis
cases through its low precision score of 0.56 and
recall score of 0.52. The precision and recall
relationship are evaluated as F1 score of 0.49,
indicating an undesired performance imbalance. The
model demonstrated a moderate ability to classify
patients based on their susceptibility to urosepsis
according to the AUROC score value 0f0.7391, given
in Figure. 3 (b) despite having lower precision and
recall scores. The confusion matrix given in Figure. 3
(a) indicates that the model struggles with correctly
classifying class 0 (urosepsis) but performs slightly
better for class 1 (normal). It correctly identifies only
one instance of class 0 while misclassifying 22 cases
of class 0 as class 1, leading to a high false positive
rate. However, it correctly classifies three cases of
class 1 and does not misclassify any of them as class
0. This suggests that the model is biased toward
predicting class 1, possibly due to the feature
distribution assumptions of Gaussian Naive Bayes
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Figure 4: This figure shows the performance of
Gaussian Naive Bayes Classifier through (a)
Confusion Matrix (b) AUROC.
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The decision tree model showed good performance
through a precision value of 0.87 and recall value of
0.87, which indicated equal efficiency in detecting
true positives and minimizing incorrect predictions.
The model achieved an accuracy level of 0.77, lower
than both SVC and KNN. The AUROC score of
0.4348 indicates the poor performance in
distinguishing among classes. The confusion matrix
for shows that the model performs well in identifying
urosepsis cases (class 0), correctly classifying 20
instances, with only three false negatives (urosepsis
cases misclassified as non-urosepsis). However, it
fails to identify non-urosepsis cases (class 1),
misclassifying all three instances as urosepsis,
resulting in zero true positives. This suggests the
model is biased towards predicting urosepsis, likely
due to data imbalance or overfitting.
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Figure 5: This figure shows the performance of
Decision Tree Classifier through (a) Confusion
Matrix (b) AUROC

The KNN model showed high reliability (0.99) in
correctly identifying true urosepsis cases; the model
demonstrated a precision of 0.88, indicating that most
of its positive predictions were accurate. This model
achieved an 88% accuracy. The model demonstrated
reduced capability in accurately ranking patient
urosepsis risk levels according to an AUROC score of
0.5942. The confusion matrix given in Figure. 6 (a)
indicates that the model performs well in identifying
urosepsis cases (class 0), correctly classifying 23
instances with zero false positives. However, it fails
to detect non-urosepsis cases (class 1), misclassifying
all three instances as urosepsis, resulting in zero true
positives. This suggests that the model is highly
biased towards predicting urosepsis, possibly due to
class imbalance or the choice of K value in KNN.
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Figure 6: This figure shows the performance of KNN
Classifier through (a) Confusion Matrix (b) AUROC
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The Logistic Regression model correctly recognized
all actual urosepsis cases, achieving a perfect recall
result of 1.00. The precision value of 0.88, aside from
the F1-score value of 0.94, matched those of KNN
and SVC models. The model successfully detected
true urosepsis cases yet struggled with separating the
classes across all patient data based on its AUROC
score of 0.6087. The confusion matrix shows that the
model is highly skewed towards predicting urosepsis
(class 0). It correctly classifies 23 cases of urosepsis
with zero false positives, indicating perfect
specificity. However, it completely fails to identify
non-urosepsis cases (class 1), misclassifying all 3
instances as urosepsis, resulting in zero true positives.
This suggests a strong bias toward predicting
urosepsis, which may be due to class imbalance or
model limitations in distinguishing features of non-
urosepsis cases.
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Figure 7: This figure shows the performance of
Logistic Regression through (a) Confusion Matrix (b)
AUROC

The three models, Support Vector Classifier and K-
Nearest Neighbours and Logistic Regression
demonstrated exceptional results based on precision
rates and recall and Fl-score performance and
accuracy metrics. The KNN and SVC models
demonstrated a superior ability to recall urosepsis
cases while minimizing inaccurate positive results
along with other tested models. The Gaussian Naive
Bayes model delivered the poorest results because it
was not adapted to this dataset, as shown by its poor
precision score, recall rate, and F1 score. The
Decision Tree model showed adequate performance
levels in precision and recall measurements yet had
insufficient AUROC results, indicating poor class
discrimination. The developed ML models,
particularly SVM and KNN, offer practical clinical
value by enabling early identification of patients at
high risk for post-RIRS urosepsis. This enables
targeted preoperative interventions, closer
monitoring, and enhanced patient outcomes.

Discussion

This section presents the previous studies that have
been done to develop predictive models for urosepsis.
Pietropaolo et al. - 2021 used the ML model to
determine potential correlates of severe urosepsis in
ICU patients. Patients were retrospectively collected
from nine high-volume European centers: 57 patients
with urosepsis (Group A) and 57 matched controls
without urosepsis (Group B). The random forest
model was used, and the accuracy obtained was
81.3%, and sensitivity and specificity were 0.80 and
0.82, respectively, with an area under the curve of
0.89. Other outcomes were proximal stone location,
stent duration, stone size, and operative time.”

Bunn et al. - 2021 utilized machine learning
techniques to predict postoperative sepsis following
appendectomy. Pretreatment predictors of sepsis
were evaluated using logistic regression, support
vector machines, random forest decision trees, and
extreme gradient boosting. There was a comparable
performance between logistic regression, random
forest, and gradient boosting with an AUC of 0.70;
95% CI, 0.68-0.73, while support vector machine
had a significantly lower AUC of 0.51; 95%CI,
0.50-0.52. The results showed that machine learning
approaches could reasonably perform postoperative
sepsis risk assessment to minimize morbidity through
early detection and intervention.™
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Su et al. - 2022 developed an ML model based on
biomarkers of patients with urosepsis. Retrospective
analysis enrolled 157 patients with urosepsis, for
whom laboratory data of biomarkers, such as
procalcitonin, D-dimer, and C-reactive protein, were
obtained. Five of the six machine learning models
developed got above 80% accuracy, with the ANN
yielding the highest prediction.” Hong et al. — 2023
developed an early risk assessment model for
urosepsis in upper urinary tract calculi patients. A
retrospective analysis of 1,716 patients (10.8% cases,
89.2% controls) identified eight key variables: sex,
age, body temperature, diabetes history, urine
leukocyte, nitrite, glucose, hydronephrosis, etc. The
ANN model exhibited excellent performance based
on the high accuracy score of the validation set, which
generated an AUC of 0.945, while the training set
gave an AUC score 0f0.992.*

Chen et al. - 2022 developed a model incorporating
radiomics and deep learning to predict sepsis after
PCNL in patients with proximal ureteral calculi. The
radionics model has an internal validation AUC of
0.881 and an external validation AUC of 0.783.
Implementing the DNN model increased prediction
accuracy by 7 %, with internal validation of AUC
0.920 and external 0.874.” Chen et al. - 2022
developed a machine-learning model to identify
infection stones preoperatively in 462 urolithiasis
patients. The random forest classifier (RFC)
outperformed logistic regression, achieving an AUC
0f0.951 with high sensitivity and specificity.”
Therefore, it is essential to derive a model suitable for
our specific local population using region-specific
data. Ideally, such a model would be tailored to
identify unique demographic, clinical, and
environment-based factors contributing to sepsis in
the patients undergoing RIRS.

Conclusion

The clinical adoption of this prediction model can
start by utilizing SVC, KNN, and Logistic Regression
because they demonstrate the best performance in
risk assessment for urosepsis following RIRS. Such a
predictive model can enable doctors to recognize
high-risk preoperative patients by analysing their
clinical and demographic features, allowing for
timely interventions such as administering
prophylactic antibiotics, opting for delayed surgery,
or increasing postoperative monitoring to improve
patient outcomes. The detection of urosepsis before

its development enables patient-specific care
strategies that decrease serious complications and
health expenses related to postoperative infections.
The validation of these models on clinical patient
populations representing various demographic
backgrounds must occur in real-world settings to
evaluate their capability of maintaining effectiveness.
Implementing predictive models into clinical
decision support systems should be thoroughly
explored since they boost providers' data-based
choices during postoperative care.
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