

Original Article

Anaemia in Booked and Unbooked Pregnant Women at Term in a Lower Middle Income Country: A Hospital Based Study

Asma Saadia,¹ Namra Mahmood,² Muhammad Umar,³ Nayyer Sultana,⁴ Zahra Riaz,⁵ Kanwal Babar⁶

^{1,2,3,5,6}Department of Pathology, Central Park Medical College, Lahore; ⁴Department of Obstetrics & Gynecology, Central Park Medical College, Lahore

Abstract

Background: Anaemia is a severe public health problem affecting both developed and developing countries. It is most commonly associated with poverty, poor nutritional status and lack of family planning and antenatal care services especially in the third world countries.

Objectives: To investigate the burden of anaemia in pregnant women at term presenting to Central Park Teaching Hospital and to evaluate the association of severity of anaemia with booking status and parity.

Methods: This is a cross sectional study in which purposive convenience sampling technique was used for data collection of the anaemic women at term (gestation age ≥ 37 weeks). Hemoglobin level, degree of anaemia, booking status and parity status of the study population were obtained from patient records. SPSS version 27 was used. Pearson's Chi-square test was used to check the association between variables. The p-value of ≤ 0.05 being considered statistically significant.

Results: The frequency of anaemia at term was found to be 49.6% in our study. Anaemia was more common among multigravida (59.4%) and in booked patients (65.3%) with statistically significant differences. More patients with severe anaemia (71.4%) concluded their pregnancy on C-section as compared to patients with mild (54.8%) or moderate (71.0%) anaemia however, this difference was statistically insignificant.

Conclusion: Anemia remains a significant health problem among pregnant women at term in this lower middle-income setting. Higher frequency was observed among multigravida women and those who were booked, indicating that routine antenatal care alone may not be sufficient to prevent anemia.

Received: 20-10-2024 | **1st Revision:** 06-05-2025 | **2nd Revision:** 30-09-2025 | **Accepted:** 08-10-2025

Corresponding Author | Dr. Namra Mahmood, Assistant Professor of Pathology Central Park Medical College, Lahore **Email:** namramehmood2022@gmail.com

Keywords | Anaemia, pregnancy, low income population, third world country, third pregnancy trimester, parity, multigravidity, Family Planning Services

How to cite: Saadia A, Mahmood N, Umar M, Sultana N, Riaz Z, Babar K. Anaemia in Booked and Unbooked Pregnant Women at Term in a Lower Middle Income Country: A Hospital Based Study. Ann King Edw Med Univ.2025;31(4): 441-446

Introduction

Anaemia in pregnancy is a severe public health problem affecting both developed and developing countries with major consequences for human health as well as socioeconomic development.¹ It is most commonly associated with poverty, poor nutritional

Production and Hosting by KEMU

<https://doi.org/10.21649/akemu.v31i4.5974>

2079-7192/© 2025 The Author(s). Published by Annals of KEMU on behalf of King Edward Medical University Lahore, Pakistan.

This is an open access article under the CC BY4.0 license <http://creativecommons.org/licenses/by/4.0/>

status and lack of family planning especially in third-world nations.² According to World Health Organization (WHO), over 2000 million people are anaemic, with pregnant women most affected.^{1,3} Serious consequences for both the mother and the foetus are linked to severe anaemia during pregnancy. Additionally, it is among the avoidable indirect causes of maternal death.⁴ Iron deficiency is frequently the cause of anaemia in pregnancy, which the WHO defines as a haemoglobin level of less than 11 g/dl. The WHO recommends the definition of severe, moderate, and mild anaemia for pregnant women as hemoglobin concentrations of less than 7.0 g/dl, 7.0 to 9.9 g/dl, and 10.0 to 10.9 g/dl (to convert g/L to g/dL, divide by 10.0), respectively.⁵

In 2016, anaemia during pregnancy affected 40.05% of pregnant women globally, with Southeast Asia having the greatest prevalence (48.15%).⁶ Anaemia during pregnancy is estimated to affect 41.8% of pregnant women worldwide. Iron deficiency anaemia (IDA) can significantly affect the health of both the mother and the foetus if it is not identified and treated.⁷

Increased physiological and foetal needs, insufficient nutrition, poor absorption from endemic illnesses like malaria and hookworm infestation, and blood loss from numerous pregnancy losses or during and after labour are some of the factors that contribute to anaemia in obstetrics. The developing foetus receives all of its iron needs from the maternal iron reserves or from the iron that is absorbed from her food. Every obstetric procedure results in a significant iron deficiency, which, if left unchecked, leads to anaemia in women who are multi-gravida and have closely spaced pregnancies. Primiparous females and higher birth order pregnancies differ mostly in this regard.⁸

In Pakistan, the overall pooled prevalence of anaemia among pregnant women was reported to be 70.4% according to the forest plot of sixteen researches in a meta-analysis. According to a subgroup study of pregnant women by area and trimester, Punjab had the greatest prevalence of anaemia (77.4%) with 78% of women in the second trimester of pregnancy.⁹

Present study aims to gather data on anaemia at term of pregnancy specifically targeting the population around Central Park Teaching Hospital which is situated in the suburbs of Lahore.

This study will help to formulate policies and targeted interventions to improve antenatal care and reduce the burden of anaemia in our population.

Our objective of this study was to investigate the burden of anaemia in pregnant women at term in our hospital

and to evaluate the association of severity of anaemia with booking status and parity.

Methods

This cross sectional study was conducted at Pathology Department of Central Park Medical College, Lahore spanning six months, from January 1 to June 30, 2023. Institution review board (IRB) approval was obtained before the start of this study vide letter number CPMC/IRB-No/1374, dated October 3, 2022.

The operational definitions (definitions of variables) are as follows:

Term- A gestation age of 37 weeks or more, as determined by the date of the last regular menstrual cycle, was considered term.¹⁰

Booked patient- A patient who had attended at least three antenatal clinic visits and received at least one dose of tetanus immunization.¹¹

Anaemia- WHO defines anaemia in third trimester of pregnancy as Hb < 11.0 g/dl.

Anaemia was classified as follows:

Severe = < 7.0 g/dl

Moderate = 7.1 – 9.9 g/dl

Mild = 10 – 10.9 g/dl

(As per WHO, 2011 criteria)^{5,12}

Primigravida- A woman pregnant for the first time

Multigravida- A woman who has become pregnant two or more times.

Conveniently, data from women admitted to the prenatal ward who were not in active labour and who were at term (gestation age > 37 weeks based on the date of the last regular menstrual cycle) were chosen for the study. A purposive convenience sampling technique was used for data collection.

The study did not include data from patients with emergency obstetric events, hemoglobinopathies or chronic illnesses like diabetes mellitus, tuberculosis or autoimmune disorders.

Hemoglobin (Hb) level and other relevant data of the pregnant patients at term was obtained from Central Park Teaching Hospital records. Hemoglobin was determined using the Mindray BC-6200, a fully automated 5-part differential hematology analyzer. Booking status (booked or un-booked patients), parity status (primigravida or multi-gravida), degree of anaemia (mild, moderate or severe) and the mode of delivery (Vaginal delivery or C-section) of all the anaemic patients were

recorded in excel sheet.

Data were evaluated using SPSS version 27. Numerical Data was presented in numbers and percentages through tables. The association between the variables was examined using the Pearson's Chi-square test. The p-value of ≤ 0.05 being considered statistically significant.

Results

Over the period of six months, 407 pregnant women at term presented in the obstetric department of Central Park Teaching Hospital. Out of 407 pregnant women at term, 202 were diagnosed with anaemia. In this study, the frequency of anaemia at term was found to be 49.6%. Table 1 shows the distribution and severity of anaemia in the study population.

Table 1: Frequency and severity of anaemia

	Severity of anaemia					
	Non-Anaemic	Anaemic	Total (n)	Mild	Moderate	Severe
Frequency	205	202	407	157	38	7
Percentage (%)	50.4%	49.6%	100.0	38.6%	9.3%	1.7%

The parity status of the patients was compared with the severity of anaemia (mild, moderate or severe) in Table 2. The findings indicate that out of the total anaemic cases at term, anaemia was more common in multi-gravida patients as compared to primigravida patients and this difference is statistically significant.

Table 2: Case distribution according to parity status and severity of Anaemia (n=202)

Parity	Severity of anaemia			Total	P-Value
	Mild	Moderate	Severe		
Primigravida	72 (35.6%)	7 (3.5%)	3 (1.5%)	82 (40.6%)	
Multi-gravida	85 (42.1%)	31 (15.3%)	4 (2.0%)	120 (59.4%)	0.023*
Total	157	38	7	202	

In Table 3, the patients' booking status and their anaemia severity (mild, moderate, or severe) were compared. According to the results, anaemia was more prevalent in booked patients than in unbooked patients out of all the anaemic cases at term, and this difference is statistically significant (P-value = < 0.001).

Table 4 shows that out of 202 anaemic patients, 118 (58.4%) underwent Cesarean section while 84 (41.6%) delivered through spontaneous vaginal delivery (SVD). However, the difference is statistically insignificant (p-value

0.064).

Table 3: Case distribution according to booking status and severity of Anaemia

Booking Status	Severity of anaemia n(%)			Total n(%)	P-Value
	Mild	Moderate	Severe		
Booked	121 (59.9%)	7 (3.5%)	4 (1.98%)	132 (65.3%)	
Unbooked	36 (17.8%)	31 (15.3%)	3 (1.5%)	70 (34.7%)	< 0.001*
Total	157	38	7	202	

*P- value is less than 0.05 i.e. significant.

Table 4: Case distribution according to mode of delivery and severity of Anaemia (n=202)

Severity of anaemia	Mode of Delivery		Total	P-Value
	C- sec	SVD		
Mild	86 (54.8%)	71 (45.2%)	157	
Moderate	27 (71.0%)	11 (28.9%)	38	0.064
Severe	5 (71.4%)	2 (28.6%)	7	

Discussion

This study was conducted to determine the frequency of anaemia in pregnant women at term presenting at the obstetrics department of Central Park Teaching Hospital, Lahore during the study period. Out of 407 pregnant women at term, 202 were diagnosed with anaemia. So, the frequency of anaemia in pregnant women was found to be 49.6%. This is consistent with a previous study from Pakistan where the frequency of anaemia in pregnancy was reported to be 51.5%.¹³ Another study from Lahore, however, reported higher (57.7%) prevalence of anaemia in the participants.¹⁴ Anaemia during pregnancy is a significant health problem and its prevalence varies from 18% in developed countries to as high as 78% in developing nations.¹⁵ Compared to the current study, the prevalence of anaemia throughout pregnancy in India has been reported to range from 65 to 78%.^{16,17} Similarly, high rates of anaemia in pregnant women are reported by several studies from Africa.^{10,15} In developing nations, the increased prevalence of anaemia in pregnant women is mostly caused by food shortages superimposed on hemoglobinopathies, parasitic infections and deficiencies of iron, vitamin B12 and folic acid while in developed countries, hemoglobinopathies are mainly responsible for anaemia in pregnancy.¹⁵

In our study, 157 out of 202 (77.7%) were having mild

anaemia, 38 (18.8%) had moderate anaemia while 7 (3.46%) had severe anaemia. This is in accordance with another study from Lahore, Pakistan conducted by Ullah A et al. in which mild anaemia was reported to be more common than moderate or severe anaemia.¹⁴ Our results are, however, in contrast to the studies conducted in neighboring countries of the region showing that moderate anaemia was more frequent than mild and severe anaemia.^{17,18}

The high prevalence of mild anaemia in our patients could be due to the fact that some women are anaemic way before they are pregnant. This is evidenced by the National Nutritional Survey (2018) in which it was reported that anaemia among adolescent girls is 56.6% and anaemia among women of reproductive age (15-49 years) is 41.7%.¹⁹

Another possible explanation for predominance of mild anaemic patients is that most of these patients were booked (as shown in Table 3) and were given hematinic therapy during their antenatal visits which resulted in improvement of their hemoglobin levels, though not ameliorating anaemia completely.

The statistics of this study manifest that anaemia is more frequent in multigravida at term (59.4%) with 42.1% being mild anaemic followed by moderate and severe anaemia respectively (as shown in table 2). This finding is in line with other national^{13,20,21} and international studies conducted in different regions of the world.^{16,18}

One of the main risk factors for anaemia is multiparity itself. As previously mentioned, the National Nutritional Survey (2018) found that anaemia is significantly more common in teenage girls and women of childbearing age.¹⁹ Multiparity exacerbates the condition by adding to the demands of pregnancy on women who are already anaemic. Women with higher birth orders are more likely to experience inadequate iron reserve replenishment following a pregnancy event, in addition to the commonly occurring causes of anaemia in pregnancy. Every obstetric procedure results in a significant iron deficiency, which, if left unchecked, causes anaemia in women with repeated pregnancies.⁸

Diagnosis of anaemia, if established early in pregnancy provides enough time to take corrective measures and prevent feto-maternal complications. In this regard, booking of the pregnant woman at obstetric facility (i.e. to attend at least 3 antenatal visits) is essential to take care of fetal as well as mother's health throughout the process. The treating obstetrician faces a difficult situation when anaemic women appear during labour because even a small amount of blood loss during

delivery could be fatal.¹⁶

Current study showed a statistically significant difference among frequency of booked (65.3%) and unbooked (34.7%) anaemic patients. These figures visibly look alarming but considering the fact that Central Park Teaching Hospital is located in the outskirts of Lahore with the catchment area consisting mostly of working class social stratum. A number of studies have shown that anaemia is related to poor socioeconomic background, illiteracy, and multiparity²² and this could be a reason for high frequency of mild anaemia in our booked patients.

A study conducted by Sudha and Madenor in 2023 in a neighboring country observed a 58% frequency in patients who were booked, which may be brought about by inconsistent iron medication and infrequent haemoglobin testing.¹⁶

Another factor of importance discussed in Duncan BS and McDade's research is that girls are 2.4 times more likely than boys to suffer from iron insufficiency even in homes with adequate incomes in developing countries. This disparity in risk is similar to culturally defined gender-based child-feeding prohibitions: it is thought that boys benefit from "hard foods" like meat and beans while girls benefit from "soft foods" like rice, maize porridge, and tea. As a result, boys are being served iron-rich meals more often in homes that can afford to buy them.²³

In our study, 58.4% and 41.6% of anaemic women delivered by C-section and vaginally respectively. This is in line with the findings of Savaliya K. et al. who pointed out that 47.14% of anaemic women gave birth vaginally and 50% had a caesarean section.⁸

According to a meta-analysis, pregnant women who were anaemic had a 1.63-fold increased chance of having a C-section compared to those who were not. Given that maternal anaemia has been linked to prenatal discomfort, it might be one of the causes of increased frequency of C-section in anaemic women. Additionally, anaemia might hinder the uterus's ability to receive oxygen, which can result in uterine inertia during birth. The higher risk of C-section among anaemic pregnant women may possibly be explained by poor placentation and placental insufficiency, characteristics of the placenta in these patients.²⁴

Conclusion

Anemia remains a significant health problem among pregnant women at term in this lower middle-income setting, with nearly half of the study population affected.

Higher frequency was observed among multigravida women and those who were booked, indicating that routine antenatal care alone may not be sufficient to prevent anemia. Strengthening nutritional interventions, early detection and effective management strategies during pregnancy are essential to reduce the burden and complications of maternal anemia.

Further recommendation:

Further research is suggested to investigate the barriers to the use of antenatal care services, causes of anaemia in pregnant women and the potential causes of low compliance to hematinics.

Limitations of the study:

This is a single center study which did not address the factors that influence the development or progression of anaemia till term of pregnancy. To ensure the safe feto-maternal outcomes of pregnancy, knowledge and rectification of risk factors of anaemia is of utmost importance.

Ethical Approval: The Institutional Ethical & Review Board, Central Park Medical College, Lahore the study vide letter No CPMC/ IRB-No/ 1374.

Conflict of Interest: The authors declare no conflict of interest.

Funding Source: None

Authors' Contribution

AS: Acquisition of data, analysis & interpretation of data, drafting of article, critical revision for important intellectual content, final approval

NM: Conception & design, drafting of article, critical revision for important intellectual content, final approval

UC: Conception & design, analysis & interpretation of data, drafting of article

NS: Analysis & interpretation of data, critical revision for important intellectual content, final approval

ZR: Analysis & interpretation of data, drafting of article, final approval

KB: Acquisition of data, drafting of article, final approval

References

1. Tan J, He G, Qi Y, Yang H, Xiong Y, Liu C, et al. Prevalence of anemia and iron deficiency anemia in Chinese pregnant women (IRON WOMEN): a national cross-sectional survey. *BMC pregnancy and childbirth.* 2020; 20(1):1-2. doi: 10.1186/s12884-020-03359
2. Ikeanyi E, Ibrahim A. Does antenatal care attendance prevent anemia in pregnancy at term? *Niger J of Clin Pract.* 2015;18(3):323. doi: 10.4103/1119-3077.151730
3. Shah RK, Deep JP, Rahman Z, Shah P, Nayak N, Gupta RS. Prevalence of Anaemia Among Pregnant Women in Third Trimester and Its Effect on Pregnancy Outcome at Tertiary Level Teaching Hospital, Birgunj. *Medphoenix.* 2020; 5(1):54-63. doi:10.3126/medphoenix.v5i1.31417
4. Sapre SA, Raithatha NS, Bhattacharjee RS. Severe anemia in late pregnancy: a retrospective study at a tertiary care rural medical college in Gujarat. India. *Int J Reprod Contracept Obstet Gynecol.* 2018; 7(3): 1112-5. doi: 10.18203/2320-1770.ijrcog20180903
5. WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization, 2011 (WHO/NMH/NHD/ MNM/ 11.1) [Available from:<http://www.who.int/vmnis/indicators/haemoglobin.pdf>, accessed on February 24, 2025].
6. Shi H, Chen L, Wang Y, Sun M, Guo Y, Ma S, et al. Severity of anemia during pregnancy and adverse maternal and fetal outcomes. *JAMA network open.* 2022; 5(2): 2147046. doi: 10.1001/jamanetworkopen.2021.47046.
7. Garzon S, Cacciato PM, Certelli C, Salvaggio C, Magliarditi M, Rizzo G. Iron deficiency anemia in pregnancy: Novel approaches for an old problem. *Oman Med J.* 2020; 35(5):166. doi: 10.5001/omj.2020.108.
8. Savaliya K, Sharma N, Surani R, Dhakar V, Gupta A. Multigravida Women With Moderate to Severe Anaemia in Third Trimester: Fetomaternal Outcomes. *Cureus.* 2021; 13(12):20493. doi: 10.7759/cureus.20493.
9. Mahar B, Shah T, Shaikh K, Shaikh SN, Uqaili AA, Memon KN, et al. Uncovering the hidden health burden: a systematic review and meta-analysis of iron deficiency anemia among adolescents, and pregnant women in Pakistan. *J Health Popul Nutr.* 2024; 43(1):149. doi: 10.1186/s41043-024-00643-y.
10. Konje ET, Ngaila BV, Kihunrwa A, Mugassa S, Basinda N, Dewey D. High Prevalence of Anemia and Poor Compliance with Preventive Strategies among Pregnant Women in Mwanza City, Northwest Tanzania: A Hospital-Based Cross-Sectional Study. *Nutrients.* 2022; 14(18):3850. doi: <https://doi.org/10.3390/nu14183850>
11. Setia S, Maheshwari B. To study maternal complications in booked and unbooked cases. *Int J of Clin Obstet and Gynaecol.* 2020; 4(4):89-93. DOI: 10.33545/gynae.2020. v4.i4b.629
12. Saadia A, Bhalli SN, Alavi N, Qayyum HT, Alvi SJUD. Anemia in pre-school children-Does time change anything? *Biomedica.* 2018; 34(3): 163-7.

13. Shah T, Warsi J, Laghari Z. Anemia and its association with parity. *Professional Med J.* 2020; 27(5):968-72. doi: 10.29309/TPMJ/2020.27.05.3959
14. Ullah A, Sohaib M, Saeed F, Iqbal S. Prevalence of anemia and associated risk factors among pregnant women in Lahore, Pakistan. *Women Health.* 2019; 59(6):660-71. doi: 10.1080/03630242.2018.1544966.
15. Costa EA, Ayres Silva JDP. Global profile of anemia during pregnancy versus country income overview: 19 years estimative (2000–2019). *Ann Hematol.* 2023; 102(8):2025-31. doi: doi:10.1007/s00277-023-05279-2
16. Sudha R, Madenor S. Retrospective study on prevalence of severe anemia in pregnant women and its outcome. *Int J Reprod Contracept Obstet Gynecol.* 2023; 12(4): 955-8. doi: 10.18203/2320-1770.ijrcog20230793s
17. Kumari S, Garg N, Kumar A, Guru PKI, Ansari S, Anwar S,. Maternal and severe anaemia in delivering women is associated with risk of preterm and low birth weight: A cross sectional study from Jharkhand, India. *One Health.* 2019; 8(1):100098. doi: 10.1016/j.onehlt.2019.100098.
18. Sabina Azhar B, Islam MS, Karim MR. Prevalence of anemia and associated risk factors among pregnant women attending antenatal care in Bangladesh: a cross-sectional study. *Prim Health Care Res Dev.* 2021; 22(1): 61. doi: 10.1017/S146342362100061X. 10.
19. Habib A, Kureishy S, Soofi S, Hussain I, Rizvi A, Ahmed I et al. Prevalence and Risk Factors for Iron Deficiency Anemia among Children under Five and Women of Reproductive Age in Pakistan: Findings from the Pakistan National Nutrition Survey 2018. *Nutrients.* 2023;15(15):3361. doi: 10.3390/nu15153361.
20. Khan FH, Khalid AA, Alkwai HM, Alshammari RF, Alenazi F, Alshammari KF, et al. The Effect of High Parity on the Occurrence of Anaemia in Pregnant Women. *J Coll Physicians Surg Pak.* 2023; 33(12):1400-4. doi: 10.29271/jcpsp.2023.12.1400
21. Khan N, Khattak S IV. Frequency of Maternal Anemia in Patients Presenting With Preterm Premature Rupture of Membranes. *Cureus.* 2024;16(1):52973. doi: 10.7759/cureus.52973.
22. Amel Ivan E, A M. Evaluation of anaemia in booked antenatal mothers during the last trimester. *J Clin Diagn Res.* 2013; 7(11):2487-90. doi: 10.7860/JCDR/2013/6370.3586.
23. Shell-Duncan B, McDade T. Cultural and Environmental Barriers to Adequate Iron Intake among Northern Kenyan Schoolchildren. *Food and Nutrition Bulletin.* 2005; 26(1):39-48. doi:10.1177/156482650502600105
24. Adam I, Salih Y, Hamdan HZ. Association of Maternal Anemia and Cesarean Delivery: A Systematic Review and Meta-Analysis. *J Clin Med.* 2023; 12(2):490. doi: 10.3390/jcm12020490.