

Original Article

Exploring the Impact of Antioxidants on Nerve Health and Oxidative Stress in Diabetic Neuropathy

Shahameen Aqeel,¹ Sana Kashif,² Shah Jabeen,³ Fozia Shamshad,⁴ Nasir Jamil,⁵ Arifa Savanur⁶

^{1,2,3,4} Department of Physiology, Fazaia Ruth Pfau Medical College, Air University, Karachi, Sindh, Pakistan; ⁵ Department of Physiology, Liaquat college of Medicine and dentistry, Karachi, Sindh, Pakistan; ⁶ Department of Physiology, University of Karachi, Sindh, Pakistan

Abstract

Background: Persistent hyperglycemia supports the occurrence of oxidative stress and generation of endogenous free radicals, which subsequently triggers the development of diabetes complications such as peripheral neuropathy. The neurons and Schwann cells are especially susceptible to glycolytic damage due to the change in glucose levels. It has also proposed antioxidants, such as vitamins E and C, to reduce the development of neuropathy and the nerve conduction velocity (NCV).

Objective: The aim of the current study was to assess the consequences of antioxidant supplement on a model of diabetic rats and to investigate the effects of antioxidant supplement on NCV.

Methods: Diabetes Diabetes was induced in rats by streptozotocin (STZ) intraperitoneal injection. The animals were then divided into six aspects of experimentation. Measurements of blood glucose and anthropometric values were taken. Isolated nerves, NCV was recorded. One-way ANOVA was used to analyze the data and the Bonferroni post-hoc test was carried out.

Results: The level of glycaemic in diabetic rats increased (254mg⁻¹dl); but with the vitamin E and C, the level dropped to 229mg/dl and 206mg/dl respectively. Supplementation with vitamin E relieved the NCV deficits in diabetic rats but vitamin C did not achieve any statistically significant effect on NCV.

Conclusion: Vitamin E Supplementation enhances nerve conduction in diabetic rats, indicating that it may be used to treat diabetic neuropathy.

Received: 18-11-2024 | **1st Revision:** 16-05-2025 | **2nd Revision:** 12-08-2025 | **Accepted:** 14-11-2025

Corresponding Author | Dr. Shah Jabeen, Department of Physiology, Fazaia Ruth Pfau Medical College, Karachi, Sindh 74800, Pakistan, **Email:** khanshahjabeen@gmail.com

Keywords | Diabetes mellitus, hyperglycemia, diabetic neuropathy, streptozotocin, nerve conduction velocity, antioxidants.

How to cite: Aqeel S, Kashif S, Jabeen S, Shamshad F, Jamil N, Savanur A. Exploring the Impact of Antioxidants on Nerve Health and Oxidative Stress in Diabetic Neuropathy Ann King Edw Med Univ.2025;31(4): 460-465

Introduction

Diabetes mellitus is a fast-growing international health issue, the impact of which is enormous in

regard to morbidity and mortality. Epidemiological data suggest that the population is estimated to have been afflicted by millions of people around the globe with particularly high rates in low and middle income nations. As an example, over 80,000 women and 36,000 men are dying each year in Pakistan due to diabetes-related problems with a disproportionate involvement of the urban populations (12.21%) compared to the rural ones

Production and Hosting by KEMU

<https://doi.org/10.21649/akemu.v31i4.5925>
2079-7192/© 2025 The Author(s). Published by Annals of KEMU on behalf of King Edward Medical University Lahore, Pakistan.
This is an open access article under the CC BY4.0 license <http://creativecommons.org/licenses/by/4.0/>

(7.0%). There are Type 1 and Type 2 types of the disease, but the less common variants form a spectrum. Diabetic peripheral neuropathy (DN) is one of the most prevalent among its serious complications, afflicting about half of patients with diabetes; it is a bilateral, symmetric nerve damage, either small or large fibers.¹⁻⁵

Diabetic neuropathy pathophysiology is multifactorial, with metabolic perturbation caused by chronic hyperglycemia. One of the most crucial factors is increased oxidative stress due to the excess of free radicals which impairs neuronal structure and reduces the conduction of axons. High glycemic levels contribute to the generation of reactive oxygen species (ROS) and advanced glycation end products (AGEs) and lead to signaling cascades such as NF- κ B, polyol pathway, and protein kinase C, the aggregate outcome of which is peripheral nerve ischemia, mitochondrial dysfunction, and axonal degeneration [T4-T6].⁶⁻⁸

Oxidative stress is generally considered to be a key pathogenic determinant in the development of diabetic neuropathy, and in this respect, antioxidants have received a significant amount of academic attention as potential treatment agents. These compounds have effects of counteracting reactive oxygen species as well as increasing intrinsic antioxidant defense systems. Special focus is put on vitamins E and C which were reported repeatedly to have protective effects. Vitamin E - a lipid-soluble chain-breaking antioxidant found in green leafy vegetables has the effect of inhibiting lipid peroxidation, as well as, enhancing the sensitivity of insulin. Conversely, the water-soluble antioxidant vitamin C, which is abundant in citrus fruits and other vegetables, protects against oxidative damage by scavenging free radicals, decreasing protein glycation, and also through synergistic protection against oxidative damage by regenerating oxidized vitamin E.⁹⁻¹⁴

Despite all the studies conducted on oxidative stress in diabetic complications, there exists a gap on the effect of concomitant administering vitamin E and vitamin C on nerve conduction parameters in diabetic neuropathy.^{15,16} Many studies focus on biochemical biomarkers but the data on functional neurophysiological outcomes especially nerve conduction velocity is limited. Sealing this gap might help in the recognition of simple, practical intervention that are geared towards preventing or reducing the development of neuropathic disorders.¹⁷⁻¹⁹

This study aims at exploring the effects of vitamins C and E on nerve conduction velocity in one of the diabetic models based on the hypothesis that the use of antioxidant supplements could reverse neuropathic injury and

improve neurophysiological performance in diabetic neuropathy.

Methods

The animal house of the Panjwani Centre of Molecular Medicine Karachi University purchased a cohort of thirty albino rats (age 1213 weeks; body weight 200250g) used as a source of experimental animals. All the experimental procedures were in line with the ICCBS ethics. After the period of one week acclimatization, the subjects were assigned to six experimental groups of four animals each:

- **Group 1:** Control receiving normal saline
- **Group 2:** Control receiving Vitamin E (500 mg/kg/ day)
- **Group 3:** Control receiving Vitamin C (500 mg/kg/day)
- **Group 4:** Diabetic, induced with Streptozotocin (STZ)
- **Group 5:** Diabetic + Vitamin E (500 mg/kg/day)
- **Group 6:** Diabetic + Vitamin C (500 mg/kg/day)

Induction of Diabetes: Diabetes was induced in Groups 4–6 via a single intraperitoneal injection of STZ at 60 mg/kg, dissolved in citrate buffer (pH 4.5). Blood glucose levels were measured 10 days after injection; those with a level that was above 200mg/dL were considered diabetic. Treatment regimen Vitamin E and vitamin C were administered orally through gavage at the rate of 500 mg/kg/day/28-day as a continuous course starting a day after the assessment of diabetic conditions was made. Assessments: Once the treatment regimen was over, the animals were weighed and the concentration of blood glucose was re-assessed. Rats were then euthanized, and the sciatic nerve was excised. Nerve Conduction Velocity (NCV) recording the excised nerve segments were placed in Krebs buffer and mounted in a nerve chamber with standardized electrodes (ground, stimulation, and recording electrodes). The nerve was positioned over a 4 cm distance between the electrodes. NCV was recorded at 0, 15, 30, 45, and 60 minutes using a PowerLab data acquisition system (AD Instruments).

Data Analysis were expressed as Mean \pm Standard Error. Statistical significance was evaluated using one-way ANOVA with post hoc testing; $p < 0.05$ was considered significant.

Results

Streptozotocin (STZ) successfully induced diabetes in rats as demonstrated by a significantly higher fasting

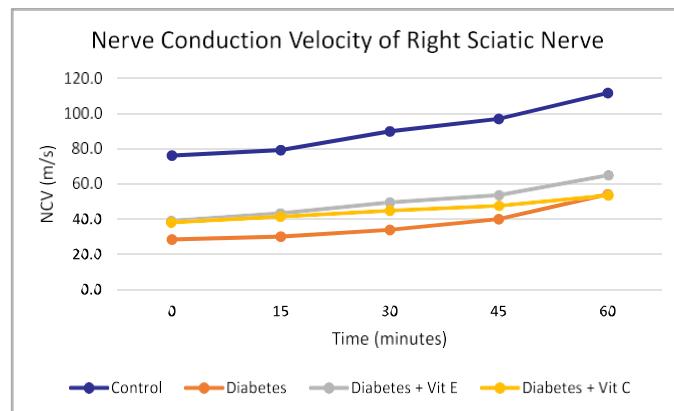

blood glucose (FBG) levels in diabetic group compared to controls (FBG in control: 104.3 ± 23.9 , STZ rats: 254.0 ± 23.9 . Glucose levels in STZ supplemented with Vitamin E were: 229.5 ± 22.5 and STZ supplemented with Vitamin C: were 206.5 ± 29.5 mg/dl. However, the FBG levels of STZ induced diabetic rats supplemented with Vitamin E and vitamin C were reduced but not statistically significant ($p=1.000$), ($p=0.069$) respectively (Table 1).

Table 1: Fasting blood glucose of rats, 21 days following induction of diabetes

	Control (n=4)	STZ induced diabetics (n=4)	Diabetics + Vitamin E (n=4)	Diabetics + Vitamin C (n=4)
Fasting blood glucose (mg/dl)	104.3 ± 23.9	254.0 ± 23.9	229.5 ± 22.5	206.5 ± 29.5
Control STZ induced diabetics		p<0.01	p<0.01	p<0.01
	p<0.01		p=1.000	p=0.069

P<0.05 is significant. Values are shown as mean \pm SD

NCV was studied using right and left sciatic nerve over 15 minute intervals for an hour in 4 groups – control group, diabetic group, diabetic group supplemented with Vitamin C, and diabetic group supplemented with Vitamin E.

Figure 1: Comparison of nerve conduction velocities of right sciatic nerve in control group (blue), diabetic group (orange), diabetic group supplemented with Vitamin C (yellow) and diabetic group supplemented with Vitamin E (gray) at 0, 15, 30, 45 and 60 minute time intervals

There was a significant reduction in NCV in diabetic

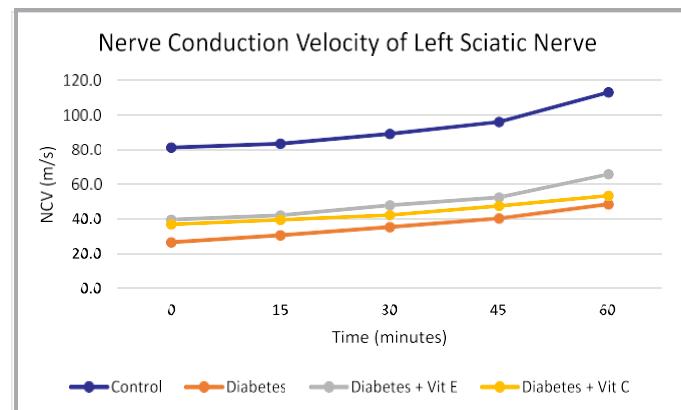
Table 2: Nerve Conduction Velocity of right sciatic nerve at 0, 15, 30, 45 and 60 minute time intervals

	N \pm sd	NCV (m/s)				
		0min	15mins	30mins	45mins	60mins
Control	N \pm sd	76.2 ± 8.4	82.1 ± 14.6	89.9 ± 8.1	97 ± 9.5	111.8 ± 10.2
Diabetes	N \pm sd	28.4 ± 3.6	30.0 ± 4.2	33.8 ± 3.2	39.9 ± 3.8	54.0 ± 15.14
	p-value	<0.001*	<0.001*	<0.001*	<0.001*	<0.001*
Diabetes & Vitamin C	N \pm sd	38.6 ± 2.4	41.8 ± 2.3	45.1 ± 3.5	47.8 ± 3.3	53.5 ± 4.4
	p-value	0.494	1.000	0.071	0.964	1.000
Diabetes & Vitamin E	N \pm sd	39.5 ± 7.6	43.6 ± 6.3	49.7 ± 5.1	53.8 ± 5.8	64.8 ± 14.0
	p-value	0.321	0.102	0.004*	0.04*	1.000

p-value of diabetic control is compared to controls; p -value of Diabetes + Vitamin C and Diabetes + Vitamin C is compared to Diabetes group p<0.05 is significant

Table 3: Nerve Conduction Velocity of left sciatic nerve at 0, 15, 30, 45 and 60 minute time intervals

	N \pm sd	NCV (m/s)				
		0min	15mins	30mins	45mins	60mins
Control	N \pm sd	81.7 ± 7.0	83.9 ± 8.1	89.4 ± 7.9	96.3 ± 12.0	113.1 ± 13.7
Diabetes	N \pm sd	27.0 ± 5.0	31.0 ± 4.3	35.6 ± 3.1	40.5 ± 2.7	48.6 ± 5.0
	p-value	<0.001*	<0.001*	<0.001*	<0.001*	<0.001*
Diabetes & Vitamin C	N \pm sd	37.1 ± 1.8	39.6 ± 4.4	42.4 ± 3.6	47.6 ± 1.8	53.6 ± 4.4
	p-value	0.218	0.896	1.000	1.000	1.000
Diabetes & Vitamin E	N \pm sd	39.8 ± 7.4	42.2 ± 7.6	48.0 ± 5.3	52.6 ± 7.0	65.8 ± 10.6
	p-value	0.045*	0.266	0.087	0.323	0.142


P-value of diabetic control is compared to controls; p -value of Diabetes + Vitamin C and Diabetes + Vitamin C is compared to Diabetes group p<0.05 is significant

group compared to the control group at every time point ranging from 0mins (control: 76.2 ± 8.4 m/s DM: 28.4 ± 3.6 m/s, $p < 0.001$) to 15mins (control: 82.1 ± 14.6 m/s DM: 30.0 ± 4.2 m/s, $p < 0.001$), 30mins (control: 89.9 ± 8.1 m/s DM: 33.8 ± 3.2 m/s, $p < 0.001$), 45 mins (control: 97 ± 9.5 m/s DM: 39.9 ± 3.8 m/s, $p < 0.001$) to 60mins (control: 111.8 ± 10.2 m/s DM: 54.0 ± 15.14 m/s, $p < 0.001$) in the right sciatic nerve.

An improvement was noticed at 30mins (DM: 33.8 ± 3.2 m/s DM & Vit E: 49.7 ± 5.1 m/s, $p = 0.004$) and 45mins (DM: 39.9 ± 3.8 m/s DM & Vit E: 53.8 ± 5.8 m/s, $p = 0.04$) in the diabetic group supplemented with Vitamin E. However, supplementation with Vitamin C after induction of diabetes did not yield any statistically significant improvement in NCV (Table 2, Figure 1).

There was a significant reduction in NCV in diabetic group compared to the control group at every time point ranging from 0 mins (control: 81.7 ± 7.0 m/s DM: 27.0 ± 5.0 m/s, $p < 0.001$) to 15mins (control: 83.9 ± 8.1 m/s DM: 31.0 ± 4.3 m/s, $p < 0.001$), 30mins (control: 89.4 ± 7.9 m/s DM: 35.6 ± 3.1 m/s, $p < 0.001$), 45 mins (control: 96.3 ± 12.0 m/s DM: 40.5 ± 2.7 m/s, $p < 0.001$) to 60mins (control: 113.1 ± 13.7 m/s DM: 48.6 ± 5.0 m/s, $p < 0.001$) in the left sciatic nerve.

At 0mins, there was an improvement noticed in nerve conduction velocity of diabetic mice treated with Vitamin E (DM: 27.0 ± 5.0 m/s DM & Vitamin E: 39.8 ± 7.4 m/s, $p = 0.045$). By and large, no statistically significant changes were noted in the nerve conduction velocity other than 0 min readings of diabetic mice supplemented with either Vitamin E or Vitamin C (Table 3, Figure 2).

Figure 2: Comparison of nerve conduction velocities of left sciatic nerve in control group (blue), diabetic group (orange), diabetic group supplemented with Vitamin C (yellow) and diabetic group supplemented with Vitamin E (gray) at 0, 15, 30, 45 and 60 minute time intervals

Discussion

This study demonstrated that Vitamin E supplementation significantly improved nerve conduction velocity (NCV) in diabetic rats, indicating a neuroprotective effect against diabetic neuropathy. These findings align with previous research showing that Vitamin E, owing to its lipophilic antioxidant properties, helps preserve nerve function by reducing oxidative stress and supporting myelin integrity.^{12,13,17} Supplementation with vitamin C on the contrary, did not provide statistically significant improvements in nerve conduction velocity throughout the experiment, which can be attributed to the hydrophilic nature, limited cellular absorption during hyperglycemic conditions, or dose-dependent actions.^{12,13}

The most common way Vitamin E protects the brain seems to be in the form of the scavenging of free radicals thus preventing lipid peroxidation and maintaining the structural integrity of neuronal membranes and myelin sheaths.^{16-18,20-22} and could also help in the regeneration of nerve fibers by protecting Schwann cells and promoting cellular repair.¹⁷⁻¹⁹ As an antioxidant, Vitamin C is water-soluble and neutralizes oxidative stress by counterbalancing free radicals and restoring Vitamin E; however, its effect might be limited by the dosage used in the present study, which might be due to the limitation of their cellular absorption in the state of diabetes.^{12,21} What is more, when the Vitamin C doses are large, it autoxidizes at a higher concentration and thus reduces its antioxidant effect.²³

There are a number of limitations to consider. This small sample was also a probable limitation to the statistical power to identify minor effects, particularly in Vitamin C. The fact that high antioxidant doses are used also makes one concerned about the possibility of toxicity or pro-oxidant effects at higher doses.²³⁻²⁵ Also, the study was conducted over a period of 21 weeks, which was not enough to measure long-term nerve structural changes or regeneration. The lack of histopathological evaluations will not allow direct correlation of functional and morphological repair of the nerves.

Further studies need to consider larger samples, dose importance analyses and follow-up to validate and elaborate such results. Histological studies of nerve tissues into the study can be useful in explaining morphological counterparts of functional recovery. Notably, to apply these results to clinical practices, it is essential to evaluate the optimal dosing and safety of antioxidants, and the possibility of coming up with an adjunctive treatment of diabetic neuropathy.^{12,17,19}

Conclusion

The research shows that Vitamin E plays a great role in enhancing nerve conduction velocity in diabetic rats, and therefore it could be used as a neuroprotective agent in diabetic neuropathy. The future studies should aim on larger sample sizes, prolonged dose and clinical trials to confirm its effectiveness and safety in human beings.

Ethical Approval: The Institutional Bioethical Committee, University of Karachi approved this study vide IBC KU-390/2024.

Conflict of Interest: The authors declare no conflict of interest.

Funding Source: None

Authors' Contribution

SA: Conception & design, acquisition of data, critical revisions for important intellectual content

SK: Conception & design, drafting of article, final approval of the version to be published

SJ: Analysis & interpretation, critical revisions for important intellectual content

FS: Analysis & interpretation, critical revisions for important intellectual content

NJ: Drafting of article

AS: Critical revisions for important intellectual content, final approval of the version to be published

References

1. Harreiter J, Roden M. Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019). *Wiener klinische Wochenschrift*. 2019; 131(Suppl 1):6-15. <https://doi.org/10.1007/s00508-019-1450-4>
2. Akhtar S, Shah SWA, Javed S, Alina A. Prevalence of Diabetes and Prediabetes in District Swat Pakistan. *J Pak Med Assoc*. 2021;71(1):243-6. <https://doi.org/10.47391/JPMA.548>
3. Basit A, Askari S, Zafar J, Riaz M, Fawwad A, NDSP Members. NDSP 06: Prevalence and Risk Factors for Obesity in Urban and Rural Areas of Pakistan: A Study from Second National Diabetes Survey of Pakistan (NDSP), 2016 2017. *Obes Res Clin Pract*. 2021;15(1): 19-25. <https://doi.org/10.1016/j.orcp.2020.11.007>
4. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. *Oxid Med Cell Longev*. 2020; 2020: 8609213. <https://doi.org/10.1155/2020/8609213>
5. Hicks CW, Selvin E. Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes. *Curr Diab Rep*. 2019;19(10):86. <https://doi.org/10.1007/s11892-019-1212-8>
6. Lin Q, Li K, Chen Y, Xie J, Wu C, Cui C, et al. Oxidative Stress in Diabetic Peripheral Neuropathy: Pathway and Mechanism based Treatment. *Mol Neurobiol*. 2023; 60(8):4574-94. <https://doi.org/10.1007/s12035-023-03342-7>
7. Ng YT, Phang SCW, Tan GCJ, Ng EY, Botross Henien NP, Palanisamy UDM. The Effects of Tocotrienol Rich Vitamin E (Tocovid) on Diabetic Neuropathy: a Phase II Randomized Controlled Trial. *Nutrients*. 2020; 12(5): 1-15. <https://doi.org/10.3390/nu12051522>
8. Sirisha A, Gaur GS, Pal P, Suryanarayana BS, Bobby Z, Pal GK. Effects of three Months of Honey Supplementation on Quality of Life and Neuropathy in Type 2 Diabetic Patients. *Altern Ther Health Med*. 2021; 27 (S1):54-60.
9. Miyazawa T, Burdeos GC, Itaya M, Nakagawa K, Miyazawa T. Vitamin E: Regulatory Redox Interactions. *IUBMB Life*. 2019;71(4):430-41. <https://doi.org/10.1002/iub.2008>
10. Okdahl T, Brock C. Molecular Aspects in the Potential Of Vitamins And Supplements For Treating Diabetic Neuropathy. *Curr Diab Rep*. 2021;21(9):31. <https://doi.org/10.1007/s11892-021-01397-1>
11. Pavithra D, Praveen D, Chowdary PR, Aanandhi MV. A Review on Role of Vitamin E Supplementation in Type 2 Diabetes Mellitus. *Drug Inven Today*. 2018; 10(2):236-40.
12. Abdullah M, Jamil RT, Attia FN. Vitamin C (Ascorbic Acid). *Treasure Island (FL): StatPearls Publishing*; 2023.
13. Puvvada RC. Association of Vitamin C Status in Diabetes Mellitus: Prevalence and Predictors of Vitamin C Deficiency. *Future J Pharm Sci*. 2020;6:1-5. <https://doi.org/10.1186/s43094-020-00040-2>
14. Liao S, Omage SO, Börmel L, Kluge S, Schubert M, Wallert M, et al. Vitamin E and Metabolic Health: Relevance of Interactions with other Micronutrients. *Antioxidants*. 2022;11(9):1-31. <https://doi.org/10.3390/antiox11091785>
15. Tehrani KHN. A Study of Nerve Conduction Velocity in Diabetic Patients and its Relationship with Tendon Reflexes (T reflex). *Acta Biomed*. 2020;91(3): e2020066. doi: 10.23750/abm.v91i3.7288.
16. Gao Y, Chen S, Peng M, Wang Z, Ren L, Mu S, et al. Correlation Between Thioredoxin Interacting Protein and Nerve Conduction Velocity in Patients with Type 2 Diabetes Mellitus. *Front Neurol*. 2020;11:733. <https://doi.org/10.3389/fneur.2020.00733>

17. Pang KL, Chin KY. The Role of Tocotrienol in Protecting Against Metabolic Diseases. *Molecules*. 2019; 24(5): 923. <https://doi.org/10.3390/molecules24050923>

18. Sadikan MZ, Nasir NA, Iezhitsa I, Agarwal R. Antioxidant and Anti apoptotic Effects of Tocotrienol rich Fraction against Streptozotocin induced Diabetic Retinopathy in Rats. *Biomed Pharmacother*. 2022; 153: 113533. <https://doi.org/10.1016/j.biopha.2022.113533>

19. Fabiyi Edebor T. Vitamin C Attenuates Hyperalgesia, Peripheral Nerve Degeneration and Reversed Paw Numbness in a Wistar Rat Model of Diabetic Neuropathy. *Afr J Biomed Res*. 2021;24(1):129-34.

20. Abdelqader A, Obeidat MD, Al Rawashdeh MS, Alrazak AA. The Role of Vitamin E as an Antioxidant and Preventing Damage Caused by Free Radicals. *J Life Sci Appl Res*. 2023;4(2):88-95. <https://doi.org/10.59807/jlsar.v4i2.89>

21. Bhatti JS, Sehrawat A, Mishra J, Sidhu IS, Navik U, Khullar N, et al. Oxidative Stress in the Pathophysiology of Type 2 Diabetes and Related Complications: Current Therapeutics Strategies and Future Perspectives. *Free Radic Biol Med*. 2022;184:114-34. <https://doi.org/10.1016/j.freeradbiomed.2022.03.019>

22. Paul R, Mukherjee S, Basu S, Sengupta N. Add on Vitamin E in Improving Treatment Outcomes in Diabetic Peripheral Neuropathy: A Prospective Interventional Study. *Public Health*. 2024;15(2):312-8. <https://doi.org/10.37506/z8mscq23>

23. Sirisha A, Gaur GS, Pal P, Bobby Z, Balakumar B, Pal GK. Effect of Honey and Insulin Treatment on Oxidative Stress and Nerve Conduction in an Experimental Model of Diabetic Neuropathy Wistar Rats. *PLoS One*. 2021; 16(1):e0245395. <https://doi.org/10.1371/journal.pone.0245395>

24. El Soury M, Fornasari BE, Carta G, Zen F, Haastert Talini K, Ronchi G. The Role of Dietary Nutrients in Peripheral Nerve Regeneration. *Int J Mol Sci*. 2021; 22(14):7417. <https://doi.org/10.3390/ijms22147417>

25. Sabry RM, Ahmad EA, Yousef DM. The Possible Protective Role of Vitamins C & E Supplemented Diet on the Testis of Adult Albino Rat with Induced Diabetes. *Egypt J Histol*. 2023;46(2):973-92. <https://doi.org/10.21608/ejh.2022.111595.1611>