A Comparative Analysis of Sextant and Extended 5 – Region 13 Core Trans-rectal Ultrasound Guided Prostate Biopsy

Kamran Zaidi,1 Khizar Hayat,2 Fawad Nasar Ullah,3 Mumtaz Ahmed,4 Ahmed Salman Waris5 Sajjad Hussain6

Abstract

Objective: To compare the diagnostic value of Extended 5 – Region (13 core) Trans-rectal Ultrasound guided Prostate Biopsy with Standard Sextant Biopsy.

Materials and Methods: 60 patients underwent transrectal ultrasound guided biopsy of prostate. In addition to sextant biopsies, cores were taken from far lateral and mid regions of the gland. Pathological findings of the additional regions were compared to those of the sextant regions.

Results: We performed 5 – region trans-rectal ultrasound guided prostate biopsy of 60 patients. The reason for biopsy was abnormal digital rectal examination in 10 patients (16.7%), elevated PSA in 26 (43.3%) and combined abnormalities in 24 (40%). Out of these 60 cases, 37 (61.6%) came out to have prostate cancer. Of the cancer patients 5 (13.5%) had an abnormal digital rectal examination, 14 (37.8%) had elevated PSA and 18 (48.6%) had both abnormalities. Among these 37 positive for carcinoma prostate cases, 22 patients were positive for prostate cancer in addition (zone 1, 3, 5) as well as sextant regions(zone 2, 4), 12 patients had cancer only in additional region 1, 3 and 5 and 3 patients were positive for prostate cancer in sextant regions alone.

Conclusion: Five region technique of prostate biopsy is an efficient mean of significantly increasing the diagnostic yield of prostate biopsy in finding carcinoma of the prostate. We have found this technique to be safe, efficacious and superior to sextant biopsies in diagnosing prostate cancer in patients with a PSA level of less than 10 ng / ml.

Key Words: Sextant and extended systematic 5 – region trans-rectal ultrasound guided prostate biopsy, Carcinoma of prostate.

Introduction
Pakistan has a high incidence of cancer, from its independence in 1947 to the present. The escalating burden of non-communicable diseases worldwide warrants an urgent public health response, especially for Pakistan. Prostate cancer is one of the major problems facing the male population. Adeno-carcinoma of prostate is multifocal and heterogeneous disease. Both low and high grade disease can be present simultaneously. Considerable attention has been focused on early detection during the last decade using Prostate Specific Antigen (PSA), Digital Rectal Examination (DRE), TRUS and TRUS guided prostatic biopsy. By this method prostate cancer is detected at an early stage when it is organ confined, to decrease morbidity and mortality associated with the disease. Not all prostatic malignancies are palpable on DRE. When DRE findings are correlated to pathological evaluation, under staging and over staging are often found. Consequently DRE fails to detect a significant number of malignancies. Among those which are detected by DRE, a significant number is at an advanced stage. Final diagnosis of prostate cancer can only be reached by histological confirmation of cancer cells on biopsy tissue. Although a PSA level greater than 4ng/ml is considered elevated, age adjusted normal PSA values have been established. A rising PSA over time though less than 4 ng/ml may also be an indication for biopsy, especially in high-risk group. A change in PSA value or PSA velocity of more than 0.75 ng/ml per year was a specific marker for presence of prostate cancer. The advent of transrectal Ultrasonography offered a new way to evaluate the prostate. The trans-rectal ultrasound guided biopsy became standard urological procedure for detecting prostate cancer. Prostate biopsy using transrectal ultrasound guidance involves removal of a series of randomly distributed cores of tissue from the posterior aspect of the prostate, the region believed to harbor the majority of prostate cancers. Two decades ago 2 to 4 biopsy cores were removed. After 1989, 6 cores (the sextant biopsy technique) became the standard for about a decade. Svetec et al (ref 8 of beyond) in 1998 demonstrated a 45.6% false negative rate of sextant biopsy. It was established that with 6 cores, many tumors are missed. So 10 to 12 cores biopsy became popular.

Methodology
Patients were selected from Urology in-door and out-door departments of Lahore General Hospital, Lahore. Full informed and written consent that outlines alter-
natives, consequences, and complications of biopsy was obtained prior to the procedure. All patients were given a 3-day course of oral antibiotics (ciprofloxacin 500 mg and metronidazole 400 mg) started a night before biopsy. All patients had their bleeding profile PT APTT INR and platelet count a day before biopsy. Patients on anticoagulant were instructed not to take anti-platelet and anticoagulant drugs at least five days before biopsy, and their bleeding profile checked. All patients were given bowel cleansing with an enema at least two hours before the procedure starts. Adequate analgesia was provided by intravenous administration of (nalbuphin at dose of 0.1 mg/kg body weight) before the procedure starts, also instilling 10 cc of 2% intrarectal xylocain gel 5–10 minutes before the procedure to provide local anesthesia. Patients were placed in left lateral decubitus position with knees and hips flexed 90 degree. Transrectal ultrasound was performed and prostate volume was calculated using the formula for the volume of ellipsoid J1 / 6 (major axis². x minor axis). For biopsy, prostate was imaged in sagittal plane.

Prostate biopsy was performed under transrectal ultrasound guidance using a 5 MHZ rectal probe, fitted with transrectal puncture adaptor and an automatic spring – loaded biopsy gun. Each patient underwent 5-region method of biopsy regardless of the ultrasound appearance of prostate cancer.

The 5 region biopsy technique was included taking Sextant biopsies as described by Hodge et al, half way between midline and lateral border 3 cores were taken from the right and 3 from the left prostatic lobe at apex, mid – gland and base. In addition, 2 biopsies were obtained from each lateral aspect of gland and 3 from the middle of the prostate. At least 13 biopsies per patient were taken.

The core biopsy specimens from each zone was sent separately and labeled according to the right lateral region (region 1), right mid (region 2), middle (region 3), left mid (region 4), and left lateral (region 5) areas. Core samples were sent to histopathologist and reported as cancer with an assigned Gleason Score. Biopsy findings from region 1, 3 and 5 were compared to those of region 2 and 4, which are the conventional sextant regions. Results were analyzed to find out the superiority or otherwise of extended systematic 5-region prostate biopsy over conventional Sextant biopsy in detecting prostate cancer. Statistical analysis comparing the results of biopsies of these regions was performed.

Results

The mean age of patients with benign prostatic conditions was 66.9 ± 10.61 years (range 46 – 81 years), while that for adenocarcinoma was 70 ± 11.4 years (range 50 – 98 years) (p < 0.01) (Fig. 1).

Twenty nine patients (48.3%) presented with irritative lower urinary tract symptoms, 19 (31.7%) patients with irritative and obstructive symptoms and four patients (6.7%) with general weakness and lower back pain; one of them had chronic anemia and weight loss. Urinary retention was found in 31 patients (51.7%). Transurethral resection of the prostate (TURP) was done for 43 patients to relieve urinary obstruction after
the histopathological biopsy report (Fig. 2).

The reason for biopsy was abnormal digital rectal examination in 10 patients (16.7%), elevated PSA in 26 (43.3%) and combined abnormalities in 24 (40%). Of the 60 patients who underwent trans-rectal ultrasound guided prostate biopsy 37 (61.6%) had prostate cancer. Of the cancer patients 5 (13.5%) had an abnormal digital rectal examination, 14 (37.8%) had elevated PSA and 18 (48.6%) had both abnormalities (Table 1). Mean PSA for the cancer cohort was 9.9 ± 1.9 ng/ml (95% confidence interval 7.75 to 12.06), which compared to a mean PSA of 8.3 ± 1.4 ng/ml for patients without cancer (95% confidence interval 6.79 to 9.74).

Of the 37 patients with prostate cancer 12 (32.4%) had carcinomas only in regions 1, 3 and 5 (right lateral, middle and left lateral lobes). These tumors would have been undetected had the sextant biopsy technique been used (Table 2). This difference was statistically significant (p < 0.05).

Of 13 patients (35.1%) with clinical stage T1c disease (nonpalpable) 5 (38.5%) had carcinoma of the prostate in regions 1, 3 and 5 only, which would have been missed by the standard sextant biopsy technique. Of 24 patients (64.9%) with stage T2 lesions (palpable) 7 (29.2%) had cancer in zones 1, 3 and 5 only, which would have been missed by the sextant method (Table 2).

Serum PSA was correlated with digital rectal examination findings and regions of positive biopsy. Of 9 patients with stage T1c disease and a PSA of 4 to 10 ng./ml. 4 (44.4%) had carcinoma only in the additional regions, compared to 1 with stage T1c disease and a PSA of greater than 10 ng./ml, and 5 of 13 (38.4%) with palpable stage T2 lesions and a PSA of less than 10 ng./ml. Only 2 of 11 patients with palpable stage T2 disease cancer and a PSA of greater than 10 ng./ml was identified with the 5 region technique (Table 3).

Of the 37 patients with carcinoma 22 had a PSA of 10 ng/ml or less. Among these 22 patients 9 (40.9%) were diagnosed with the 5 region technique and not standard sextant biopsies. However, of the remaining 15 cancer cases out of 37 with a PSA of greater than 10 ng/ml. only 3 (15.0%) were diagnosed with the 5 region technique. Of the patients with a PSA of more than 10 ng/ml. 90% were diagnosed with the standard sextant biopsy method (Table 4).

Among the 37 patients with cancer 4 (10.8%) were referred for radical prostatectomy, while 8 (24.2%) received external beam radiation therapy 1 (2.7%) patient received brachytherapy along with external beam radiation therapy at Agha khan hospital. Due to advanced disease 15 patients (40.5%) were treated with androgen deprivation therapy: 7 (18.9%) are being followed with watchful waiting and 2 (5.4%) refused treatment.

Thirty seven (37) patients were detected positive in a study, in which 34 patients were detected in additional regions, biopsy method (region 1, 3, 5), in which
22 patients were also positive in sextant biopsy region (2, 4 regions, Gold standard) and were considered positive for Ca prostate with a sensitivity of 88% and specificity of 66% (positive predictive value 65% and negative predictive value 88%).

![Fig. 4: Age ranges and mean of benign and carcinoma patients.](image)

![Fig. 5: Symptoms.](image)
Table 1: Reason for Biopsy No. of Patients (%).

<table>
<thead>
<tr>
<th>Reason for Biopsy</th>
<th>Totals</th>
<th>Positive Digital Rectal Examination</th>
<th>PSA More Than 4.0 ng/ml</th>
<th>Both Abnormal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>37 (61.6)</td>
<td>5 (13.5)</td>
<td>14 (37.8)</td>
<td>18 (48.6)</td>
</tr>
<tr>
<td>NoCa</td>
<td>23 (38.4)</td>
<td>5 (21.7)</td>
<td>12 (52.2)</td>
<td>6 (26.1)</td>
</tr>
<tr>
<td>Totals</td>
<td>60</td>
<td>10 (16.7)</td>
<td>26 (43.3)</td>
<td>24 (40)</td>
</tr>
</tbody>
</table>

Table 2: Regions of positive biopsies.

<table>
<thead>
<tr>
<th></th>
<th>No. of Patients</th>
<th>No. of Positive Biopsy (%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In Regions 1, 3 and 5 Only</td>
<td>In Regions 2 and 4 Only (Sextant)</td>
<td>In Sextant and Additional Regions</td>
</tr>
<tr>
<td>Ca cohort</td>
<td>37</td>
<td>12 (32.4)</td>
<td>3 (8.1)</td>
<td>22 (59.5)</td>
<td></td>
</tr>
<tr>
<td>Clinical stage T1c Ca</td>
<td>13 (35.1)</td>
<td>5 (38.5)</td>
<td>2 (15.4)</td>
<td>6 (46.1)</td>
<td></td>
</tr>
<tr>
<td>Stage T2 Ca or greater</td>
<td>24 (64.9)</td>
<td>7 (29.2)</td>
<td>1 (4.2)</td>
<td>16 (66.6)</td>
<td></td>
</tr>
</tbody>
</table>

Comparison between regions 1, 3, 5 and regions 2, 4: p value < 0.05 using Chi square test.

Table 3: Correlation of digital rectal examination and PSA with positive prostate biopsy.

<table>
<thead>
<tr>
<th>No. of Patients</th>
<th>PSA range (ng/ml)</th>
<th>No. of Positive / Total No. of Patients (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Biopsy</td>
<td>In Regions 1, 3 and 5 only</td>
<td></td>
</tr>
<tr>
<td>Normal digital rectal examination (stage T1c Ca)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4 – 10</td>
<td>9/20 (45.0)</td>
<td>4/9 (44.4)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>More than 10</td>
<td>4/9 (44.4)</td>
<td>1/4 (25)</td>
<td></td>
</tr>
<tr>
<td>Abnormal digital rectal examination (stage cT2 Ca or greater)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4 – 10</td>
<td>13/20 (65.0)</td>
<td>5/13 (38.4)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>More than 10</td>
<td>11/11 (100)</td>
<td>2/11 (18.2)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Correlation of PSA with positive biopsy.

<table>
<thead>
<tr>
<th>PSA range (ng/ml)</th>
<th>No. of patients</th>
<th>No. of positive / Total No. of Patients (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 or less 10</td>
<td>40</td>
<td>22/40 (55)</td>
<td>9/22 (40.9)</td>
<td></td>
</tr>
<tr>
<td>More than 10</td>
<td>20</td>
<td>15/20 (75)</td>
<td>3/20 (15.0)</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

The adenocarcinoma of prostate gland is the most common malignancy of genitourinary tract. Incidence of disease rises with increasing age. The various tools like PSA, DRE and TRUS are being used for diagnosis of disease, but the prostatic biopsy remains only the diagnostic test for detection of prostate cancer.9

As more patients are being screened for prostate cancer, the number of patients undergoing prostate biopsies will annually increase. There are concerns about screening of prostate cancer that clinically insignificant cancers will be diagnosed which will not aff-
ect life expectancy. At the same time several recent studies have shown that prostate cancer is a progressive malignant disease which will affect life expectancy. Albertsen et al reported a decrease in life expectancy of 4 to 8 years in a cohort of men 65 to 75 years old with Gleason scores 5 to 10 a carcinoma when treated with non-curative intent. Several authors have shown that non-palpable stage T1c carcinoma of the prostate to be a significant disease. In our study of 60 cases, 37 were diagnosed as case of adeno-carcinoma of prostate Out of these 37 cases 13 (35.1%) were having stage T1c disease. Out of these 13 patients 5 (38.5%) cases were having positive biopsy in region 1, 3 and 5, 2 (15.4%) cases positive in region 2 and 4 alone. It was positive in 6 (46.1%) in all 5 regions. So by this technique no of diagnosed carcinoma of prostate cases increased which would have been missed by sextant technique. Stevec et al reported 45.6% false negative result of sextant biopsy for clinically localized disease (beyond 8). Recently Lerner et al showed that 91% of patients with stage T1c carcinoma of the prostate had significant tumor grade and volume. They also showed a statistically significant progression – free survival advantage for patients with stage T1c disease treated with radical prostatectomy. Clearly, prostate cancer, even at early stages (T1c), is a progressive disease and prompt detection of disease at lower stages represents the best chance for survival.

Our results indicate a 32.4% increase in diagnostic yield of prostate biopsy when the 5 region method is used rather than the sextant method. By increasing the no of biopsy cores there was increase in cancer detection both for non-palpable and palpable lesions. The additional cancers found by the 5 region biopsy technique appear to be clinically significant. Rabbani et al reported that 23% false negative result of sextant technique. In our study there were 24 patients having stage T2. Out of these in 7 (29.2%) patients cancer was detected only in region 1, 3 and 5, 1 (4.2%) in sextant region while it was positive in 16 (66.6) patients by 5 region technique. So there is clear edge of extended 5 region biopsy technique even in T2 group. Svetec et al reported that in clinical localized disease in patients who had undergone radical prostatectomy the false negative result of 45.6% by sextant technique. This difference with our study could be due to ex vivo radical prostatectomy specimen sampling. Eskew et al in his series of 200 patients performed extended prostatic biopsy. Out of these 200 cases, 31 had previously undergone sextant biopsy. At repeat biopsy by extended technique 39% patients had prostate cancer. The average time between biopsies was less than 1 year (268 days, range 89 to 650 days). These data suggested that some carcinomas existed at the time of prior biopsy but remained undetected due to inadequate sampling. Striker et al used the Bayesian theory to demonstrate that for a fixed percent volume of prostate cancer the probability of finding cancer increases as the number of biopsies increases. Optimal biopsy strategy has supported the use of extended 10 to 14 cores biopsy scheme a new gold standard for prostate biopsy. During the time between false – negative biopsy and repeat positive biopsy, the cancer may progress to a stage at which curative therapy is not possible or is ineffective. Stamey recently stated that there may be some advantage to taking prostate biopsies more laterally than originally described by the sextant method. Since November 1993 he had been obtaining more laterally directed biopsies similar to regions 1 3 and 5 of our 5 region technique. It appears that the 5 region biopsy method has its greatest use in patients with a serum PSA of less than 10 ng/ml. In this population 40.9% of cancers were diagnosed with the 5 region technique. These cancers would have been undetected with the sextant method. However, the standard sextant method detected 90% of the patients with cancer and a PSA of greater than 10 ng/ml. Thus, for patients with a PSA of greater than 10 ng/ml there appear to be diminishing returns to additional biopsy over the standard sextant zones.
Conclusion

Secondary prevention relies on finding a disease process at the earliest stage possible to prevent associated morbidity and mortality. Finding prostate cancer when it is organ confined decreases cancer related deaths and sufferings. For this reason we introduce in Urology department Lahore General Hospital, Lahore the 5 region technique of prostate biopsy as a means of significantly increasing the diagnostic yield of prostate biopsy in finding carcinoma of the prostate. We have found this technique to be safe, efficacious and superior to sextant biopsies in diagnosing prostate cancer.

References