Estimation of Left Ventricular End Diastolic Pressure by Tissue Doppler Imaging in Patients with Acute Myocardial Infarction

Ali M.,1 Abid A.R.,2 Rehman T.A.,1 Masood A.,4 Sohail S.5

Address for Correspondence: Muzaffer Ali, Assistant Professor of Cardiology, Allama Iqbal Medical College/Jinnah Hospital, Lahore.

Objective: To evaluate sensitivity and specificity of E / Ea > 10 for prediction of LVEDP > 15 mmHg in patients with coronary artery disease undergoing left heart catheterization.

Materials and Methods: Sixty patients of acute transmural myocardial infarction at Jinnah Hospital Lahore were enrolled in study from December 2008 to December 2009. Patients with sinus rhythm were included in the study. Patients with valvular heart disease, complete right/left bundle branch block, Pacemaker dependence, Atrial fibrillation and Post mitral valve replacement were excluded. All patients were examined by performing transthoracic Doppler echocardiography. The transmitral LV filling signal was traced manually and the following variables were obtained: peak early (E) and late (A) transmitral velocities, and E/A ratio. Tissue – Doppler derived indices were recorded at the lateral mitral annulus. These indices included systolic velocities (S'), early diastolic velocity (Ea) velocities and late diastolic (Aa) velocities. Finally, the dimensionless index of E/Ea was calculated. All were averaged from at least three beats. Cardiac catheterization was performed via transfemoral / trasradial route using six French (6F) sheaths. Left ventricular diastolic pressure was directly measured by fluid filled pigtail catheter attached to a pressure transducer.

Results: Mean age of the study population was 56.8 ± 12.7 years. There were 47 (78.3%) males and 13 (21.7%) females. Diabetes mellitus was present in 12(20%), hypertension in 32 (53.3%), smoking in 35 (58.3%), dyslipidemia in 24 (40%). Anterior wall myocardial infarction occurred in 44 (73.3%) and inferior wall MI in 16 (26.7%). Grade I diastolic dysfunction was present in 22 (36.7%), Grade II in 31 (51.7%) and Grade III in 7 (11.7%) patients. E/E < 10 was observed in 31 (51.7%), 11 – 15 in 20 (33.3%) and > 15 in 9 (15%). Overall 21 patients were true positive, 6 were false positive, 25 were true negative and 8 were false negative. By applying 2 × 2 table sensitivity was 77.7%, specificity was 80.6%, positive predictive value was 77.7% and negative predictive value was 75.7%.

Conclusion: Doppler echocardiography provided major insights into the pathophysiology of diastolic LV dysfunction. E/Ea ratio is a reasonably good index for predicting elevated left ventricular filling pressure. E/Ea significantly correlated with LVEDP in the population with high prevalence of coronary artery disease. This method is the standard in measuring pressures in most clinical settings.

Key Words: Acute myocardial infarction; Coronary artery disease; Doppler echocardiography; Tissue Doppler imaging; Diastolic dysfunction.

Introduction
Heart failure is a condition of high morbidity and mortality, and its incidence is increasing.5 In the era of constantly advancing medical therapies and devices, early identification of high – risk subjects with left ventricular dysfunction remains mandatory to prevent heart failure and to improve prognosis. In the United States, approximately 5 million patients have heart failure, and over 550,000 individuals are newly diagnosed with heart failure each year.2

Diastolic dysfunction is common in cardiac disease and contributes to the signs and symptoms of heart failure. Doppler echocardiography is widely used for the noninvasive assessment of diastolic filling of the left ventricle (LV).3 Analysis of the mitral inflow velocity curve has provided useful information for determination of filling pressures and prediction of prognosis in selected patients.3

Doppler echocardiography has become the non-invasive and reproducible method for the assessment of systolic and diastolic function of the left ventricle and also of the left ventricular filling pressure.3 Mitral inflow velocities [Early mitral inflow velocity (E wave) and late mitral inflow velocity (A wave), measured by pulsed Doppler echocardiography, are used to evaluate left ventricular diastolic performance.5

However, mitral flow is dependent on multiple interrelated factors, including the rate and extent of ventricular relaxation, suction, atrial and ventricular compliance, and left atrial pressure.6 These factors may have confounding effects on the mitral inflow; thus, it has not been possible to determine diastolic function from the mitral flow velocity curves in many subsets of patients.7

Tissue Doppler imaging (TDI) of mitral annular motion has been proposed to evaluate diastolic filling function and detect pseudonormalization of mitral valve inflow.3,8,9 There are several reports about using TDI parameters such as peak early diastolic velocity of mitral annulus (Ea), peak late
diastolic velocity of mitral annulus (Aa), and E/Ea, to predict left ventricular filling pressure. However, there was no correlation between TDI interval (duration, acceleration time and DT) and LVEDP.\(^3\) Combining transmural flow velocity with annular velocity (E/Ea) has been proposed as the best single Doppler predictor for evaluating left ventricular filling pressure.\(^3,8,10\)

The cut off point of E/Ea to predict high LV filling pressure was still uncertain, varying between 8-15.\(^3,8,11\) The purpose of this study is to evaluate sensitivity and specificity of E/Ea > 10 for prediction of LVEDP > 15 mmHg in patients with acute transmural myocardial infarction undergoing left heart catheterization.

Materials and Methods

Sixty patients of acute transmural myocardial infarction admitted via emergency at Jinnah Hospital Lahore were enrolled in study from December 2008 to December 2009. The study was reviewed and approved by the ethical committee Jinnah Hospital Lahore. Informed consent was taken from all patients undergoing the study. Patients with sinus rhythm were included in the study on the basis of these criteria. a) Patients presenting with first acute myocardial infarction were included in the study on the basis of any two of the following criteria: 1) Chest pain consistent with acute myocardial infarction. 2) i. Electrocardiographic changes; ST segment elevation > 0.2 mv in at least two contiguous chest leads or > 0.1 mv in at least two contiguous limb leads or iir. New or presumably new left bundle branch block.

Major exclusion criteria were: Valvular heart disease, Complete right/left bundle branch block, Pacemaker dependence, Atrial fibrillation and Post mitral valve replacement.

All patients were examined by performing transthoracic Doppler echocardiography before cardiac catheterization by the operators who were blinded to patients’ history and hemodynamic data. Parasternal and apical views were obtained using the GE Vivid 7 (GE Medical Systems, Milwaukee, WI) standard echocardiographic system and multifrequency transducer with tissue Doppler capability. Standard two dimensional images, M-mode, spectral and color Doppler, and TDI were performed. All echocardiographic procedures were performed within 6 hours of the patient’s initial admission to hospital.

Left ventricular (LV) inter–ventricular septal thickness (IVS), posterior wall thickness (PWT), and LV ejection fraction (EF) were determined from 2–dimensional images according to established criteria. Left ventricular diastolic function was assessed using both conventional and novel diastolic parameters. Transmural LV filling velocities at the tips of the mitral valve leaflets were obtained from the apical 4–chamber view using pulsed wave Doppler echocardiography. The transmitral LV filling signal was traced manually and the following variables were obtained: peak early (E) and late (A) transmitral velocities, and E/A ratio. Tissue - Doppler derived indices were recorded at the lateral mitral annulus. A sample volume of 6 × 6 mm was positioned along the basal lateral wall of the apical 4 chamber view. These indices included systolic velocities (S’), early diastolic (Ea) velocities and late diastolic (Aa) velocities. Finally, the dimensionless index of E/Ea was calculated. All were averaged from at least three beats.

Cardiac catheterization was performed via trasfemoral / trasradial route using six (6F) French sheaths. Left ventricular diastolic pressure was directly measured by fluid filled pigtail catheter attached to a pressure transducer.

The fourth intercostals spaces between the anterior-posterior diameter of the chest wall measured at zero level. All hemodynamic data was recorded before the left ventriculogram was performed. The left ventricular end diastolic pressure (LVEDP) was obtained by computer recording. Results from at least five beats were averaged. After that, standard technique coronary angiogram was performed.

Study Design

It is an observational study.

Statistical Analysis

All the data were analyzed by SPSS (Statistical Package for Social Sciences release 14.0; SPSS, Inc; Chicago, IL) system for Windows. Categorical variables were expressed as frequencies and percentages and continuous variables as means ± Standard deviations (SD). Risk factors for coronary artery disease like smoking, hypertension, family history of Ischemic heart disease, site of myocardial infarction were reported as frequencies and percentages. True positive, true negative, false positive and false negative were calculated. By applying 2 × 2 tables measures of diagnostic accuracy like sensitivity, specificity, positive and negative predictive values were computed.

Results

Mean age of the study population was 56.8 ± 12.7 years. There were 47 (78.3%) males and 13 (21.7%) females. Diabetes mellitus was present in 12 (20%), hypertension in 32 (53.3%), smoking in 35 (58.3%), dyslipidemia in 24 (40%). Anterior wall myocardial infarction occurred in 44 (73.3%) and inferior wall MI in 16 (26.7%).

Grade I diastolic dysfunction was present in 22(36.7%), Grade II in 31 (51.7%) and Grade III in 7 (11.7%) patients. E/Ea < 10 was observed in 31 (51.7%), 11 – 15 in 20 (33.3%) and > 15 in 9 (15%). Overall 21 patients were true positive, 6 were false positive, 25 were true negative and 8 were false negative. By applying 2 × 2 table sensitivity was 77.7%, specificity was 80.6%, positive predictive value was 77.7% and negative predictive value was 75.7%.

Discussion

Heart failure is a condition of high morbidity and mortality, and its incidence is increasing.\(^1\) In the era of constantly advancing medical therapies and devices, early identification of high – risk subjects with left ventricular dysfunction remains mandatory to prevent heart failure and to improve...
prognosis. Diastolic dysfunction is common in cardiac disease and contributes to the signs and symptoms of heart failure. Doppler echocardiography is widely used for the noninvasive assessment of diastolic filling of the left ventricle (LV). Analysis of the mitral inflow velocity curve has provided useful information for determination of filling pressures and prediction of prognosis in selected patients. Tissue Doppler imaging of mitral annular motion has been proposed to evaluate diastolic filling function and detect pseudonormalization of mitral valve inflow.

The current study has revealed high sensitivity and specificity for tissue Doppler imaging in estimation of LV end diastolic pressure. Our results are in accordance with previous studies.

Ommen et al reported that the noninvasive assessment of LV filling pressures can be an important clinical tool. In diseased ventricles, progressive shortening of the transmitral DT and increasing E/A ratio can be seen with decreasing ventricular compliance and increasing left atrial pressure. Ommen et al studied 100 consecutive patients referred for cardiac catheterization who underwent simultaneous Doppler interrogation. The results were blinded to the investigator. Tongyoo et al performed a study to validate the clinical usefulness of E/Ea ratio in a large number of patients. Simultaneous left ventricular pressure measurements and Doppler examinations were performed in 200 consecutive patients at the cardiac catheterization laboratory. The E/Ea ratio correlated well with pre-A wave pressure, and the correlation was not dependent on the left ventricular systolic function. The E/Ea ratio of ≥ 9 best discriminated elevated (> 12 mm Hg) from normal left ventricular pre-A pressure with a sensitivity of 81% and a specificity of 80%.

Kim et al performed a study to validate the clinical usefulness of E/Ea ratio in a large number of patients. Simultaneous left ventricular pressure measurements and Doppler examinations were performed in 200 consecutive patients at the cardiac catheterization laboratory. The E/Ea ratio correlated well with pre-A wave pressure, and the correlation was not dependent on the left ventricular systolic function. The E/Ea ratio of ≥ 9 best discriminated elevated (> 12 mm Hg) from normal left ventricular pre-A pressure with a sensitivity of 81% and a specificity of 80%.

Lam et al found that Ea was reduced and E/Ea was

Table 1: Demographics of the study population.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Numbers (Percentages) n = 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age mean years</td>
<td>56.8 ± 12.7</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>47 (78.3%)</td>
</tr>
<tr>
<td>Female</td>
<td>13 (21.7%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>12 (20%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>32 (53.3%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>35 (58.3%)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>24 (40%)</td>
</tr>
<tr>
<td>MI territory</td>
<td></td>
</tr>
<tr>
<td>AWMI</td>
<td>44 (73.3%)</td>
</tr>
<tr>
<td>IWMI</td>
<td>16 (26.7%)</td>
</tr>
</tbody>
</table>

Table 2: Diastolic dysfunction.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Numbers (Percentages) n = 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>Grade I</td>
<td>22 (36.7%)</td>
</tr>
<tr>
<td>Grade II</td>
<td>31 (51.7%)</td>
</tr>
<tr>
<td>Grade III</td>
<td>7 (11.7%)</td>
</tr>
<tr>
<td>E/Ea</td>
<td></td>
</tr>
<tr>
<td>< 10</td>
<td>31 (51.7%)</td>
</tr>
<tr>
<td>11 – 15</td>
<td>20 (33.3%)</td>
</tr>
<tr>
<td>> 15</td>
<td>9 (15%)</td>
</tr>
</tbody>
</table>

Table 3: Parameters of diagnostic accuracy.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2 × 2 table</th>
<th>Results</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>a / a + c</td>
<td>21 / 21 + 8</td>
<td>21 / 27 × 100</td>
</tr>
<tr>
<td>Specificity</td>
<td>d / d + b</td>
<td>25 / 25 + 6</td>
<td>25 / 41 × 100</td>
</tr>
<tr>
<td>PPV</td>
<td>a / a + b</td>
<td>21 / 21 + 6</td>
<td>21 / 27 × 100</td>
</tr>
<tr>
<td>NPV</td>
<td>d / c + d</td>
<td>25 / 25 + 8</td>
<td>25 / 33 × 100</td>
</tr>
</tbody>
</table>

PPV = Positive predictive value; NPP = Negative predictive value

278 ANNS VOL 16. NO. 4 OCT. – DEC. 2010
increased in patients with heart failure and a normal EF compared with both normal subjects and patients with hypertension without heart failure. Similarly, Kasner et al observed that an elevated E/Ea ratio was the best non-invasive measure of diastolic dysfunction for distinguishing patients with heart failure and a preserved EF with invasively proven diastolic dysfunction from normal subjects. Consistent with these observations, the European Society of Cardiology consensus statement on how to diagnose diastolic heart failure suggests that an E/Ea ratio >15 alone or an E/Ea > 8 in combination with an elevated B–type natriuretic peptide > 200 pg/mL can be used as the simplest non-invasive objective indication of diastolic dysfunction to confirm the presence of diastolic heart failure.\(^1\)

All of the measures discussed above are useful in identifying patients with or without elevations of LA pressure. However, the most commonly used and easiest-to-interpret parameter to estimate LA pressure is the E/Ea ratio. As discussed, the mitral E wave is augmented when there is an increased LA–to–LV pressure gradient. The Ea is reduced and delayed in the presence of slow relaxation. Thus, a high E and a low Ea (ie, increased E/Ea ratio) indicates that the increased E was due to an elevation of LA pressure, not a fall in LV diastolic pressure. E/Ea has been found to correlate with pulmonary capillary wedge pressures in a wide range of patients studied in multiple laboratories.\(^1\) It has a stronger correlation with pulmonary capillary wedge pressure than B–type natriuretic peptide.\(^1\) An E/Ea > 15 has been found to clearly indicate elevated pulmonary capillary wedge pressure, whereas an E/Ea < 8 is associated with normal LA pressure.\(^3\) In the intermediate range, an assessment of LA pressure should include the evaluation of other echo Doppler parameters associated with increased LA pressure.\(^1\)

The cutoff value of E/Ea of 15 to recognize elevated LA pressure was obtained using Ea velocity from the medial mitral annulus. Because Ea velocity from the lateral annulus is usually higher than the medial Ea velocity, the cutoff should be adjusted to 12 if the lateral annular velocity is used. An average of the medial and lateral annular velocities has been recommended,\(^1\) but as long as there is no basal regional LV wall motion abnormalities, the consistent use of 1 annular velocity should be adequate in clinical practice. We prefer using the medial annular velocity because it is helpful in differentiating myocardial disease from constrictive pericarditis.

There are several situations when E/Ea may not provide an accurate assessment of pulmonary capillary wedge pressure. First, in a normal heart, Ea occurs coincidentally with E and responds to changes in LA pressure. For example, E/Ea was not increased but actually decreased in response to massive fluid loading in normal experimental animals.\(^1\) However, because LA pressure is rarely elevated in patients with a normal heart,\(^1\) the failure of E/Ea to recognize elevated LA pressures in normal subjects is of little clinical importance. Furthermore, E/Ea can distinguish an overfilled normal LV (decreased E/Ea) from elevated LA pressure associated with cardiac dysfunction (elevated E/Ea).\(^1\) Second, E/Ea does not increase in patients with constrictive pericarditis despite elevated pulmonary capillary wedge pressures.\(^1\) In fact, the medial e’ increases as constriction becomes worse, which results in a decrease in E/Ea as constriction gets more severe and diastolic filling pressure increases (annulus paradoxus). The lateral annular velocity may be decreased and often is lower than the medial annular velocity in constriction. If a patient has clinical signs of heart failure, especially with increased jugular venous pressure, a normal or increased medial Ea velocity strongly suggests constrictive pericarditis. Third, E/Ea may not provide an estimate of LA pressure in patients with mitral stenosis or mitral regurgitation, especially without a reduction in EF.\(^1\)\(^2\)

Conclusion

Doppler echocardiography provided major insights into the pathophysiology of diastolic LV dysfunction. E/Ea ratio is a reasonably good index for predicting elevated left ventricular filling pressure. E/Ea significantly correlated with LV-EDP in the population with high prevalence of coronary artery disease. This method is the standard in measuring pressures in most clinical settings.

References

7. Yamamoto K, Nishimura RA, Chaliki HP, et al. Determination of left ventricular filling pressure by Doppler

