Frequency and Outcomes of Anastomotic Leak in Gastrointestinal Surgery at Public Sector Hospital

Gulshan Ali Memon,1 Habib-ur-Rehman,2 Syed Kashif Ali Shah,3 Rafiq Ahmed Sahito,4 Shahnawaz Leghari,5 Shahida Baloch6

Abstract

Objective: The objective of this study was to find out frequency of anastomotic leak at a hospital and explore the morbidities, duration of hospital stay.

Methods: A total of 102 patients of both genders from 18 – 60 years in age underwent for bowel resection and anastomosis through laparotomy incision at surgical unit one of People’s University of Medical & Health Sciences, Nawabshah, from January 2013 to December 2016 were enrolled in this cross-sectional study. Every patient received appropriate antibiotics for duration according to need post-operatively. Follow-up was every fortnightly for four months to evaluate the primary outcome as prevalence of leak and secondary outcome as morbidities, length of hospital stay incisional hernia and mortality.

Results: The results showed that, out of 102 patients underwent open primary hand sewn gastrointestinal anastomosis, 16 (15.68%) were found with anastomotic leak. Among these 16 patients having anatomic leak, 11 (11%) were male & 5 (5%) were female. While, mortality occurred in 05 (5%) patients.

Conclusions: Anastomotic leak following gastrointestinal anastomosis is less complication in this study. Further studies are requested with large data and more follow-ups to ensure the findings of this study at national level.

Keywords: Abdominal surgery, abdominal trauma, tuberculosis, anastomotic leak, conventional surgery.

Introduction

Intestinal anastomosis is surgical procedure to restore bowel continuity after removal of diseased or traumatized avascular bowel.1 The surgical wisdom has remained very much attentive with patient’s outcomes and has developed various techniques with understanding of risk factors to obviate the most dreadful post-operative complication of gastrointestinal anastomotic leak,2 but it still remains a major cause of morbidity, mortality, re-operation and prolonged duration of hospitalization.3,4 Various rate of anastomotic leaks noted in literature by researchers are (8 – 41% (4) in rectum, (3 – 29% (5 – 6) in colon, (1 – 3% (7 – 8) in small intestine, (1 – 9% (12 – 1 4) in stomach (10 – 16% (7 – 9) in bile ducts and (2 – 16% (15) in esophagus. The mechanism concerning anastomotic leaks is still deceptive and elusive.5 Therefore most effective surgical techniques remains under considerable debate, but
Surgeons are all too familiar that generally outcome of surgical anastomosis depends upon certain critical factors like, the state of the health of the patient, BMI, American Society of Anaesthesiologist (ASA) score, sepsis, site, nature and volume of leak. The logical steps for the treatment in gastro intestinal anastomotic leaks are: re-operation with copious peritoneal wash and fecal diversion, drainage of collection, nutritional support, prevention of further contamination, infection and restoration of the continuity of gut. There are no standard guide lines of treatment to follow, hence the management and prevention of this complications becomes difficult and variable. So, anastomotic leak puts significant burden on the health care system and patients, beside the devastating clinical outcomes. This confronting challenge of anastomotic leak put the quest to identify the factors that could improve outcomes in resource limited hospitals, where a hand sewn anastomosis is still a common practice. The aims of our study were to find out frequency and outcomes of anastomotic leak at our hospital.

Methods

A total of 102 patients of both genders from 18-60 years in age, underwent for bowel resection and anastomosis through laparotomy incision at surgical unit one of People’s University of Medical & Health Sciences, Nawabshah, from January 2013 to December 2016 were enrolled in this cross-sectional study after having informed consent to participate as per described policy. The surgeries considered for inclusion were hand sewn entero-enteric anastomosis, colectomy and hemicolectomy. Patients below 18 years of age, patients using corticosteroids, underwent simple stoma closure, protective anastomosis by a proximal diversion or have transferred from other hospitals with leak, abscess or fistula were excluded from this study. Patients characteristics viz, sex, age, BMI, ASA score, length of hospital stay and surgical anastomotic types (ileo-ileal, iliocolic, colo-colic, colo-rectal) with relevant under lying cause/disease were recorded.

Every patient received appropriate antibiotics for duration according to need post-operatively. Patients were visited daily during their hospitalization and diets were allowed from liquids to regular on clinical assessments. Drains were removed when the output was less than 20 ml per day. Post-operative complications were recorded by registrars and residents involved in this study.

Anastomotic leak was defined as an extra-luminal leakage of gastric or intestinal fluid from newly intervened gastro-intestinal anastomosis clinically presenting with post-operative fistula, abscess or air leak confirmed either by contrast-enhanced CT-scan or re-laparotomy findings. The further intervention for fecal diversion decided on the clinical condition of patient supported by lab investigations was also recorded. Patients were discharged, when the condition was satisfactory. Follow-up was every fortnightly for four months.

A follow-up data form was completed at the follow-up in ward office to record the frequency of anastomotic leak, re-admission or complication after initial discharge. The recorded complications were reviewed by a senior surgeon of surgical unit one to evaluate the primary outcome as prevalence of leak and secondary outcome as morbidities, length of hospital stay incisional hernia and mortality.

Data analyzed on SPSS version 20. Descriptive analysis including patient baseline demographic, clinical features and hospital stay duration were recorded on designed proforma. Univariate analyses were performed to assess the rates of leaks as outcomes in form of frequency and percentage. Continuous measures (e.g., age) were summarized in means ± S.D.

Results

A total 102 consecutive patients underwent open primary hand sewn gastro intestinal anastomosis, Among them 18 patients were withdrawn for missing in following-up and remaining 102 patients met inclusion criteria were subjected in this cross sectional study, as summarized in table 1.

The results showed that, out of 102 patients underwent open primary hand sewn gastro intestinal anastomosis, 16 were found with anastomotic leak, assuming a frequency of 15.6%. Among these 16 patients having anatomic leak, 11 (11%) are male & 5 (5%) are female. Among these 16 patients having anatomic leak, 13 patients developed leaks on first week of surgery during hospitalization where 03 patients developed in 10 days during follow-up. The length of hospital stay, re-admission and incisional hernia were higher in patients who developed anastomotic leak. In this study, among 61 patients who underwent gastro intestinal...
anastomosis in emergency operation developed leaks in 10 patients, having frequency of 16.3% and remaining 41 (40%) patients of underwent operations electively developed leaks in 06 patients, having frequency of 14.6%.

Discussion

Anastomotic leak is one of the most dangerous complications having as negative outcomes with prolonged hospital stay, morbidity mortality and the difficult management which puts higher burden on health care system. In this regard numerous techniques and tools have been developed for monitoring and preventing this complication, but none seems to influence the course of outcomes, so for so, still medical literature does not submit any single randomized controlled trial to compare and evaluate the efficacious procedures for good outcomes as delineated by Dietil M and colleagues.14

This study is attempted to report on the outcomes in gastrointestinal anastomosis and has found the increase rates (16.3%) patients with anastomotic leaks, who underwent in emergency operation in comparison to rates (14.6%) who underwent for operations electively, this may be as they were prepared and optimized pre-operatively for surgery and this is in same line as described by Bruce and colleagues.15 Although overall leak rate (15.6%) in this study is sum of various sites of surgeries but is strikingly higher in comparison to other studies.16-22 We observed that patients having anastomotic leaks had increased operative times and greater intra-operative blood loss in comparison to non-leaked patients. This intra-operative observation is also seen in literature as the reasons for anastomotic leak.23

The duration of hospitalization, Re-operation for fecal diversions, drainage of collections, incisional hernia and resource expenditure for management were higher in the patients having leaks, and these findings are corresponding with other studies in literature.3,4,24 In this study, five (5%) patients were died, three patients from anastomotic leak were died in hospital within 25 days, remaining two patients died in follow-up and were without anastomotic leaks. However anastomotic leak related mortality in literature looks to be higher as in most of studies anastomoses are seen in colorectal cancers.6,23 While our study have patients of different diseases with different sites of anastomosis. The lower mortality rate in this study is may be due to small sample size and short follow-up.

Conclusions

Anastomotic leak following gastrointestinal anastomosis is less complication in this study. Further studies are requested with large data and more follow ups to ensure the findings of this study at national level. In gastrointestinal anastomosis, prompt diagnosis, evaluation of patients, proper pre-operative optimization and skillful intervention can reduce the rates of this dreadful complication of anastomotic leak.

Table 1:

<table>
<thead>
<tr>
<th>Characteristics of Patients</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>71</td>
<td>31</td>
</tr>
<tr>
<td>Median Age</td>
<td>44</td>
<td>35</td>
</tr>
<tr>
<td>Range</td>
<td>(20 – 60)</td>
<td>(22 – 57)</td>
</tr>
<tr>
<td>ASA Score I</td>
<td>48</td>
<td>22</td>
</tr>
<tr>
<td>ASA Score II</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>BMI, KG/m² (median)</td>
<td>25.1 (18.5 – 31.2)</td>
<td>24.2 (17.5 – 30.3)</td>
</tr>
<tr>
<td>Diabetes Controlled</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Without Leaks</th>
<th>With Leaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total patients 102</td>
<td>83 (84.4%)</td>
<td>16 (15.6%)</td>
</tr>
<tr>
<td>Length of hospital stay range</td>
<td>(8 – 14) days</td>
<td>(8 – 60) days</td>
</tr>
<tr>
<td>Re-admission</td>
<td>05</td>
<td>03</td>
</tr>
<tr>
<td>Re-operations</td>
<td>03</td>
<td>16 (fecal diversion)</td>
</tr>
<tr>
<td>Incisional Hernia</td>
<td>06</td>
<td>14</td>
</tr>
<tr>
<td>Mortality</td>
<td>01</td>
<td>04</td>
</tr>
</tbody>
</table>
References

